Apply Zscore processing to a given tensor or array.
This method can be used with Numpy data:
n = np.array([[0,1],[2,3]])
b = fe.backend.zscore(n) # [[-1.34164079, -0.4472136 ],[0.4472136 , 1.34164079]]
This method can be used with TensorFlow tensors:
t = tf.constant([[0,1],[2,3]])
b = fe.backend.zscore(t) # [[-1.34164079, -0.4472136 ],[0.4472136 , 1.34164079]]
This method can be used with PyTorch tensors:
p = torch.tensor([[0,1],[2,3]])
b = fe.backend.zscore(p) # [[-1.34164079, -0.4472136 ],[0.4472136 , 1.34164079]]
Parameters:
Name |
Type |
Description |
Default |
data |
Tensor
|
The input tensor or array. |
required
|
Returns:
Type |
Description |
Tensor
|
Data after substracting mean and divided by standard deviation. |
Raises:
Type |
Description |
ValueError
|
If tensor is an unacceptable data type. |
Source code in fastestimator\fastestimator\backend\zscore.py
| def zscore(data: Tensor, epsilon: float = 1e-7) -> Tensor:
"""Apply Zscore processing to a given tensor or array.
This method can be used with Numpy data:
```python
n = np.array([[0,1],[2,3]])
b = fe.backend.zscore(n) # [[-1.34164079, -0.4472136 ],[0.4472136 , 1.34164079]]
```
This method can be used with TensorFlow tensors:
```python
t = tf.constant([[0,1],[2,3]])
b = fe.backend.zscore(t) # [[-1.34164079, -0.4472136 ],[0.4472136 , 1.34164079]]
```
This method can be used with PyTorch tensors:
```python
p = torch.tensor([[0,1],[2,3]])
b = fe.backend.zscore(p) # [[-1.34164079, -0.4472136 ],[0.4472136 , 1.34164079]]
```
Args:
data: The input tensor or array.
Returns:
Data after substracting mean and divided by standard deviation.
Raises:
ValueError: If `tensor` is an unacceptable data type.
"""
if tf.is_tensor(data):
data = tf.cast(data, tf.float32)
mean = tf.reduce_mean(data)
std = tf.keras.backend.std(data)
return (data - mean) / tf.maximum(std, epsilon)
elif isinstance(data, torch.Tensor):
data = data.type(torch.float32)
mean = torch.mean(data)
std = torch.std(data, unbiased=False)
return (data - mean) / torch.max(std, torch.tensor(epsilon))
elif isinstance(data, np.ndarray):
mean = np.mean(data)
std = np.std(data)
return (data - mean) / max(std, epsilon)
else:
raise ValueError("Unrecognized data type {}".format(type(data)))
|