Bases: NumpyOp
Run a sequence of NumpyOps as a single Op.
Parameters:
Name |
Type |
Description |
Default |
ops |
Union[NumpyOp, List[NumpyOp]]
|
A sequence of NumpyOps to run. They must all share the same mode. It also doesn't support scheduled ops at
the moment, though the Fuse itself may be scheduled. |
required
|
Raises:
Type |
Description |
ValueError
|
If repeat or ops are invalid. |
Source code in fastestimator\fastestimator\op\numpyop\meta\fuse.py
| @traceable()
class Fuse(NumpyOp):
"""Run a sequence of NumpyOps as a single Op.
Args:
ops: A sequence of NumpyOps to run. They must all share the same mode. It also doesn't support scheduled ops at
the moment, though the Fuse itself may be scheduled.
Raises:
ValueError: If `repeat` or `ops` are invalid.
"""
def __init__(self, ops: Union[NumpyOp, List[NumpyOp]]) -> None:
ops = to_list(ops)
if len(ops) < 1:
raise ValueError("Fuse requires at least one op")
inputs = []
outputs = []
mode = ops[0].mode
for op in ops:
if op.mode != mode:
raise ValueError(f"All Fuse ops must share the same mode, but got {mode} and {op.mode}")
for inp in op.inputs:
if inp not in inputs and inp not in outputs:
inputs.append(inp)
for out in op.outputs:
if out not in outputs:
outputs.append(out)
super().__init__(inputs=inputs, outputs=outputs, mode=mode)
self.ops = ops
def __getstate__(self) -> Dict[str, List[Dict[Any, Any]]]:
return {'ops': [elem.__getstate__() if hasattr(elem, '__getstate__') else {} for elem in self.ops]}
def forward(self, data: List[np.ndarray], state: Dict[str, Any]) -> List[np.ndarray]:
data = {key: elem for key, elem in zip(self.inputs, data)}
forward_numpyop(self.ops, data, state["mode"])
return [data[key] for key in self.outputs]
|