Skip to content

confusion_matrix

ConfusionMatrix

Bases: Trace

Computes the confusion matrix between y_true (rows) and y_predicted (columns).

Parameters:

Name Type Description Default
true_key str

Name of the key that corresponds to ground truth in the batch dictionary.

required
pred_key str

Name of the key that corresponds to predicted score in the batch dictionary.

required
num_classes int

Total number of classes of the confusion matrix.

required
mode Union[str, Set[str]]

What mode(s) to execute this Trace in. For example, "train", "eval", "test", or "infer". To execute regardless of mode, pass None. To execute in all modes except for a particular one, you can pass an argument like "!infer" or "!train".

('eval', 'test')
output_name str

Name of the key to store to the state.

'confusion_matrix'
Source code in fastestimator\fastestimator\trace\metric\confusion_matrix.py
@traceable()
class ConfusionMatrix(Trace):
    """Computes the confusion matrix between y_true (rows) and y_predicted (columns).

    Args:
        true_key: Name of the key that corresponds to ground truth in the batch dictionary.
        pred_key: Name of the key that corresponds to predicted score in the batch dictionary.
        num_classes: Total number of classes of the confusion matrix.
        mode: What mode(s) to execute this Trace in. For example, "train", "eval", "test", or "infer". To execute
            regardless of mode, pass None. To execute in all modes except for a particular one, you can pass an argument
            like "!infer" or "!train".
        output_name: Name of the key to store to the state.
    """
    def __init__(self,
                 true_key: str,
                 pred_key: str,
                 num_classes: int,
                 mode: Union[str, Set[str]] = ("eval", "test"),
                 output_name: str = "confusion_matrix") -> None:
        super().__init__(inputs=(true_key, pred_key), outputs=output_name, mode=mode)
        self.num_classes = num_classes
        self.matrix = None

    @property
    def true_key(self) -> str:
        return self.inputs[0]

    @property
    def pred_key(self) -> str:
        return self.inputs[1]

    def on_epoch_begin(self, data: Data) -> None:
        self.matrix = None

    def on_batch_end(self, data: Data) -> None:
        y_true, y_pred = to_number(data[self.true_key]), to_number(data[self.pred_key])
        if y_true.shape[-1] > 1 and y_true.ndim > 1:
            y_true = np.argmax(y_true, axis=-1)
        if y_pred.shape[-1] > 1:
            y_pred = np.argmax(y_pred, axis=-1)
        else:
            y_pred = np.round(y_pred)
        assert y_pred.size == y_true.size

        batch_confusion = confusion_matrix(y_true, y_pred, labels=list(range(0, self.num_classes)))

        if self.matrix is None:
            self.matrix = batch_confusion
        else:
            self.matrix += batch_confusion

    def on_epoch_end(self, data: Data) -> None:
        data.write_with_log(self.outputs[0], self.matrix)