Skip to content

to_tensor

to_tensor

Convert tensors within a collection of data to a given target_type recursively.

This method can be used with Numpy data:

data = {"x": np.ones((10,15)), "y":[np.ones((4)), np.ones((5, 3))], "z":{"key":np.ones((2,2))}}
t = fe.backend.to_tensor(data, target_type='tf')
# {"x": <tf.Tensor>, "y":[<tf.Tensor>, <tf.Tensor>], "z": {"key": <tf.Tensor>}}
p = fe.backend.to_tensor(data, target_type='torch')
# {"x": <torch.Tensor>, "y":[<torch.Tensor>, <torch.Tensor>], "z": {"key": <torch.Tensor>}}

This method can be used with TensorFlow tensors:

data = {"x": tf.ones((10,15)), "y":[tf.ones((4)), tf.ones((5, 3))], "z":{"key":tf.ones((2,2))}}
p = fe.backend.to_tensor(data, target_type='torch')
# {"x": <torch.Tensor>, "y":[<torch.Tensor>, <torch.Tensor>], "z": {"key": <torch.Tensor>}}

This method can be used with PyTorch tensors:

data = {"x": torch.ones((10,15)), "y":[torch.ones((4)), torch.ones((5, 3))], "z":{"key":torch.ones((2,2))}}
t = fe.backend.to_tensor(data, target_type='tf')
# {"x": <tf.Tensor>, "y":[<tf.Tensor>, <tf.Tensor>], "z": {"key": <tf.Tensor>}}

Parameters:

Name Type Description Default
data Union[Collection, Tensor]

A tensor or possibly nested collection of tensors.

required
target_type str

What kind of tensor(s) to create, either "tf" or "torch".

required

Returns:

Type Description
Union[Collection, Tensor]

A collection with the same structure as data, but with any tensors converted to the target_type.

Source code in fastestimator\fastestimator\backend\to_tensor.py
def to_tensor(data: Union[Collection, Tensor], target_type: str) -> Union[Collection, Tensor]:
    """Convert tensors within a collection of `data` to a given `target_type` recursively.

    This method can be used with Numpy data:
    ```python
    data = {"x": np.ones((10,15)), "y":[np.ones((4)), np.ones((5, 3))], "z":{"key":np.ones((2,2))}}
    t = fe.backend.to_tensor(data, target_type='tf')
    # {"x": <tf.Tensor>, "y":[<tf.Tensor>, <tf.Tensor>], "z": {"key": <tf.Tensor>}}
    p = fe.backend.to_tensor(data, target_type='torch')
    # {"x": <torch.Tensor>, "y":[<torch.Tensor>, <torch.Tensor>], "z": {"key": <torch.Tensor>}}
    ```

    This method can be used with TensorFlow tensors:
    ```python
    data = {"x": tf.ones((10,15)), "y":[tf.ones((4)), tf.ones((5, 3))], "z":{"key":tf.ones((2,2))}}
    p = fe.backend.to_tensor(data, target_type='torch')
    # {"x": <torch.Tensor>, "y":[<torch.Tensor>, <torch.Tensor>], "z": {"key": <torch.Tensor>}}
    ```

    This method can be used with PyTorch tensors:
    ```python
    data = {"x": torch.ones((10,15)), "y":[torch.ones((4)), torch.ones((5, 3))], "z":{"key":torch.ones((2,2))}}
    t = fe.backend.to_tensor(data, target_type='tf')
    # {"x": <tf.Tensor>, "y":[<tf.Tensor>, <tf.Tensor>], "z": {"key": <tf.Tensor>}}
    ```

    Args:
        data: A tensor or possibly nested collection of tensors.
        target_type: What kind of tensor(s) to create, either "tf" or "torch".

    Returns:
        A collection with the same structure as `data`, but with any tensors converted to the `target_type`.
    """
    target_instance = {"tf": tf.Tensor, "torch": torch.Tensor}
    conversion_function = {"tf": tf.convert_to_tensor, "torch": torch.from_numpy}
    if isinstance(data, target_instance[target_type]):
        return data
    elif isinstance(data, dict):
        return {key: to_tensor(value, target_type) for (key, value) in data.items()}
    elif isinstance(data, list):
        return [to_tensor(val, target_type) for val in data]
    elif isinstance(data, tuple):
        return tuple([to_tensor(val, target_type) for val in data])
    elif isinstance(data, set):
        return set([to_tensor(val, target_type) for val in data])
    else:
        return conversion_function[target_type](np.array(data))