A summary object that records training history.
Parameters:
Name |
Type |
Description |
Default |
name |
Optional[str]
|
Name of the experiment. If None then experiment results will be ignored. |
required
|
Source code in fastestimator\fastestimator\summary\summary.py
| class Summary:
"""A summary object that records training history.
Args:
name: Name of the experiment. If None then experiment results will be ignored.
"""
def __init__(self, name: Optional[str]) -> None:
self.name = name
self.history = defaultdict(lambda: defaultdict(dict)) # {mode: {key: {step: value}}}
def merge(self, other: 'Summary'):
"""Merge another `Summary` into this one.
Args:
other: Other `summary` object to be merged.
"""
for mode, sub in other.history.items():
for key, val in sub.items():
self.history[mode][key].update(val)
def __bool__(self) -> bool:
"""Whether training history should be recorded.
Returns:
True iff this `Summary` has a non-None name.
"""
return bool(self.name)
|
merge
Merge another Summary
into this one.
Parameters:
Name |
Type |
Description |
Default |
other |
Summary
|
Other summary object to be merged. |
required
|
Source code in fastestimator\fastestimator\summary\summary.py
| def merge(self, other: 'Summary'):
"""Merge another `Summary` into this one.
Args:
other: Other `summary` object to be merged.
"""
for mode, sub in other.history.items():
for key, val in sub.items():
self.history[mode][key].update(val)
|