dataset
DatasetSummary
¶
This class contains information summarizing a dataset object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
num_instances |
int
|
The number of data instances within the dataset (influences the size of an epoch). |
required |
num_classes |
Optional[int]
|
How many different classes are present. |
None
|
keys |
Dict[str, KeySummary]
|
What keys does the dataset provide, along with summary information about each key. |
required |
class_key |
Optional[str]
|
Which key corresponds to class information (if known). |
None
|
class_key_mapping |
Optional[Dict[str, Any]]
|
A mapping of the original class string values to the values which are output to the pipeline. |
None
|
Source code in fastestimator\fastestimator\dataset\dataset.py
FEDataset
¶
Bases: Dataset
Source code in fastestimator\fastestimator\dataset\dataset.py
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
|
split
¶
Split this dataset into multiple smaller datasets.
This function enables several types of splitting: 1. Splitting by fractions.
ds = fe.dataset.FEDataset(...) # len(ds) == 1000
ds2 = ds.split(0.1) # len(ds) == 900, len(ds2) == 100
ds3, ds4 = ds.split(0.1, 0.2) # len(ds) == 630, len(ds3) == 90, len(ds4) == 180
ds = fe.dataset.FEDataset(...) # len(ds) == 1000
ds2 = ds.split(100) # len(ds) == 900, len(ds2) == 100
ds3, ds4 = ds.split(90, 180) # len(ds) == 630, len(ds3) == 90, len(ds4) == 180
Args: *fractions: Floating point values will be interpreted as percentages, integers as an absolute number of datapoints, and an iterable of integers as the exact indices of the data that should be removed in order to create the new dataset.
Returns:
One or more new datasets which are created by removing elements from the current dataset. The number of
datasets returned will be equal to the number of fractions
provided. If only a single value is provided
then the return will be a single dataset rather than a list of datasets.
Source code in fastestimator\fastestimator\dataset\dataset.py
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
|
summary
¶
Generate a summary representation of this dataset.
Returns:
Type | Description |
---|---|
DatasetSummary
|
A summary representation of this dataset. |
InMemoryDataset
¶
Bases: FEDataset
A dataset abstraction to simplify the implementation of datasets which hold their data in memory.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
Dict[int, Dict[str, Any]]
|
A dictionary like {data_index: { |
required |
Source code in fastestimator\fastestimator\dataset\dataset.py
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
|
summary
¶
Generate a summary representation of this dataset.
Returns:
Type | Description |
---|---|
DatasetSummary
|
A summary representation of this dataset. |
Source code in fastestimator\fastestimator\dataset\dataset.py
KeySummary
¶
A summary of the dataset attributes corresponding to a particular key.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
num_unique_values |
Optional[int]
|
The number of unique values corresponding to a particular key (if known). |
None
|
shape |
List[Optional[int]]
|
The shape of the vectors corresponding to the key. None is used in a list to indicate that a dimension is ragged. |
()
|
dtype |
str
|
The data type of instances corresponding to the given key. |
required |