Compute e^Tensor.
This method can be used with Numpy data:
n = np.array([-2, 2, 1])
b = fe.backend.exp(n) # [0.1353, 7.3891, 2.7183]
This method can be used with TensorFlow tensors:
t = tf.constant([-2.0, 2, 1])
b = fe.backend.exp(t) # [0.1353, 7.3891, 2.7183]
This method can be used with PyTorch tensors:
p = torch.tensor([-2.0, 2, 1])
b = fe.backend.exp(p) # [0.1353, 7.3891, 2.7183]
Parameters:
Name |
Type |
Description |
Default |
tensor |
Tensor
|
|
required
|
Returns:
Type |
Description |
Tensor
|
The exponentiated tensor .
|
Raises:
Type |
Description |
ValueError
|
If tensor is an unacceptable data type.
|
Source code in fastestimator/fastestimator/backend/_exp.py
| def exp(tensor: Tensor) -> Tensor:
"""Compute e^Tensor.
This method can be used with Numpy data:
```python
n = np.array([-2, 2, 1])
b = fe.backend.exp(n) # [0.1353, 7.3891, 2.7183]
```
This method can be used with TensorFlow tensors:
```python
t = tf.constant([-2.0, 2, 1])
b = fe.backend.exp(t) # [0.1353, 7.3891, 2.7183]
```
This method can be used with PyTorch tensors:
```python
p = torch.tensor([-2.0, 2, 1])
b = fe.backend.exp(p) # [0.1353, 7.3891, 2.7183]
```
Args:
tensor: The input value.
Returns:
The exponentiated `tensor`.
Raises:
ValueError: If `tensor` is an unacceptable data type.
"""
if tf.is_tensor(tensor):
return tf.exp(tensor)
elif isinstance(tensor, torch.Tensor):
return torch.exp(tensor)
elif isinstance(tensor, np.ndarray):
return np.exp(tensor)
else:
raise ValueError("Unrecognized tensor type {}".format(type(tensor)))
|