Skip to content

pipeline

Pipeline

A data pipeline class that takes care of data pre-processing.

Parameters:

Name Type Description Default
train_data Union[None, DataSource, Scheduler[DataSource], Dict[str, Union[None, DataSource, Scheduler[DataSource]]]]

The training data, or None if no training data is available.

None
eval_data Union[None, DataSource, Scheduler[DataSource], Dict[str, Union[None, DataSource, Scheduler[DataSource]]]]

The evaluation data, or None if no evaluation data is available.

None
test_data Union[None, DataSource, Scheduler[DataSource], Dict[str, Union[None, DataSource, Scheduler[DataSource]]]]

The testing data, or None if no evaluation data is available.

None
batch_size Union[None, int, Scheduler[int]]

The batch size to be used by the pipeline. If the batch_size is also set by a Batch Op, that value will take precedence over this one (for example, if you want to set the batch_size based on mode or ds_is). NOTE: This argument is only applicable when using a FastEstimator Dataset. NOTE: This is the global batch size regardless of the number of GPUs available in the machine. If you have multiple (N) GPUs, each will receive batch_size/N elements during a training step.

None
ops Union[None, NumpyOp, Scheduler[NumpyOp], List[Union[None, NumpyOp, Scheduler[NumpyOp]]]]

NumpyOps to be used for pre-processing. NOTE: This argument is only applicable when using a FastEstimator Dataset.

None
num_process Optional[int]

Number of CPU threads to use for data pre-processing. NOTE: This argument is only applicable when using a FastEstimator Dataset. None will default to min(n_cpus, max(32, 32*n_gpus)). Multiprocessing can be disabled by passing 0 here, which can be useful for debugging.

None
Source code in fastestimator/fastestimator/pipeline.py
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
@traceable(blacklist=('ctx_loader', 'ctx_lock'))
class Pipeline:
    """A data pipeline class that takes care of data pre-processing.

    Args:
        train_data: The training data, or None if no training data is available.
        eval_data: The evaluation data, or None if no evaluation data is available.
        test_data: The testing data, or None if no evaluation data is available.
        batch_size: The batch size to be used by the pipeline. If the batch_size is also set by a Batch Op, that value
            will take precedence over this one (for example, if you want to set the batch_size based on mode or ds_is).
            NOTE: This argument is only applicable when using a FastEstimator Dataset.
            NOTE: This is the global batch size regardless of the number of GPUs available in the machine. If you have
                multiple (N) GPUs, each will receive batch_size/N elements during a training step.
        ops: NumpyOps to be used for pre-processing. NOTE: This argument is only applicable when using a FastEstimator
            Dataset.
        num_process: Number of CPU threads to use for data pre-processing. NOTE: This argument is only applicable when
            using a FastEstimator Dataset. None will default to min(n_cpus, max(32, 32*n_gpus)). Multiprocessing can be
            disabled by passing 0 here, which can be useful for debugging.
    """
    mp_warned: bool = False
    ops: List[Union[NumpyOp, Scheduler[NumpyOp]]]
    data: Dict[str, Dict[str, Union[DataSource, Scheduler[DataSource]]]]  # {"mode": {"ds_id": ds}}

    def __init__(self,
                 train_data: Union[None,
                                   DataSource,
                                   Scheduler[DataSource],
                                   Dict[str, Union[None, DataSource, Scheduler[DataSource]]]] = None,
                 eval_data: Union[None,
                                  DataSource,
                                  Scheduler[DataSource],
                                  Dict[str, Union[None, DataSource, Scheduler[DataSource]]]] = None,
                 test_data: Union[None,
                                  DataSource,
                                  Scheduler[DataSource],
                                  Dict[str, Union[None, DataSource, Scheduler[DataSource]]]] = None,
                 batch_size: Union[None, int, Scheduler[int]] = None,
                 ops: Union[None, NumpyOp, Scheduler[NumpyOp], List[Union[None, NumpyOp, Scheduler[NumpyOp]]]] = None,
                 num_process: Optional[int] = None):
        data = {x: y for (x, y) in zip(["train", "eval", "test"], [train_data, eval_data, test_data]) if y}
        self.data = self._register_ds_ids(data)
        self.batch_size = batch_size
        self.ops = filter_nones(to_list(ops))
        if mp.get_start_method(allow_none=True) is None and os.name != 'nt':
            mp.set_start_method('fork')
        self.num_process = num_process if num_process is not None else min(cpu_count(), 32 * get_num_devices())
        if mp.get_start_method(allow_none=True) != 'fork' and self.num_process > 0 and not self.mp_warned:
            warn("Pipeline multiprocessing is disabled. OS must support the 'fork' start method.")
            self.num_process = 0
            self.mp_warned = True
        self._verify_inputs(**{k: v for k, v in locals().items() if k != 'self'})
        # Loader Variables
        self.ctx_lock = Lock()
        self.ctx_mode = 'train'
        self.ctx_epoch = 1
        self.ctx_shuffle = True
        self.ctx_output_keys = None
        self.ctx_loader = None
        self.ctx_ds_id = None
        self.ctx_batch_size = None
        self.ctx_ops = []
        self.ctx_batch_info = Batch()
        self.ctx_batch_ops = []
        self.ctx_batch_input_keys = set()

    @staticmethod
    def _register_ds_ids(
        data: Dict[str,
                   Union[DataSource, Scheduler[DataSource], Dict[str, Union[None, DataSource, Scheduler[DataSource]]]]]
    ) -> Dict[str, Dict[str, Union[DataSource, Scheduler[DataSource]]]]:
        """Associate dataset of each mode with a `ds_id`.

        Args:
            data: A dictionary with mode as key, dataset as value.
        """
        forbidden_ds_id_chars = {":", "!", ";", "|"}
        for mode, dataset in data.items():
            if isinstance(dataset, dict):
                for ds_name in dataset:
                    assert isinstance(ds_name, str) and len(ds_name) > 0, \
                        "dataset id must be a string, found {}".format(ds_name)
                    assert not any(char in ds_name for char in forbidden_ds_id_chars), \
                        "dataset id should not contain forbidden characters like ':', ';', '!', '|', " + \
                        "found {} in pipeline".format(ds_name)
                data[mode] = filter_nones(dataset)
            else:
                # Empty string is special, matches against ops which require '!ds1' but not 'ds1'
                data[mode] = {"": dataset}
        return cast(Dict[str, Dict[str, Union[DataSource, Scheduler[DataSource]]]], data)

    def _verify_inputs(self, **kwargs) -> None:
        """A helper method to ensure that the Pipeline inputs are valid.

        Args:
            **kwargs: A collection of variable / value pairs to validate.

        Raises:
            AssertionError: If `batch_size`, `ops`, or `num_process` were specified in the absence of a FastEstimator
                Dataset.
        """
        fe_dataset = False
        for dataset in get_current_items(set(d for ds in self.data.values() for d in ds.values())):
            fe_dataset = self._verify_dataset(dataset, **kwargs) or fe_dataset
        if self.data and not fe_dataset:  # If the user provided no datasets at all, still let them use ops for infer
            assert kwargs['batch_size'] is None, "Pipeline only supports batch_size with built-in (FE) datasets"
            assert kwargs['ops'] is None, "Pipeline only supports ops with built-in (FE) datasets"
            assert kwargs['num_process'] is None, "Pipeline only support num_process with built-in (FE) datasets"
        # Make sure that the user provides at most 1 Batch Op for a given epoch/mode/ds_id
        batch_ops = []
        schedule_epochs = {1}
        schedule_cycles = set()
        for op in self.ops:
            if isinstance(op, Batch):
                batch_ops.append(op)
            if isinstance(op, Scheduler):
                # Only keep the scheduler if it contains at least one Batch op
                vals = op.get_all_values()
                for val in vals:
                    if isinstance(val, Batch):
                        batch_ops.append(op)
                        if isinstance(op, EpochScheduler):
                            schedule_epochs |= op.epoch_dict.keys()
                        elif isinstance(op, RepeatScheduler):
                            schedule_cycles.add(op.cycle_length)
                        else:
                            # Some unknown scheduler, no known shortcuts so just try first 100 epochs to be safe
                            schedule_epochs |= {*range(1, 100)}
                        break
        # After m*n steps all possible m and n combinations will be visited
        schedule_cycles = functools.reduce(mul, schedule_cycles, 1)
        # Consider x + m*n epochs for each epoch scheduler x value
        schedule_epochs = sorted({
            epoch
            for base_epoch in schedule_epochs
            for epoch in list(range(base_epoch, base_epoch + schedule_cycles))
        })
        for mode, id_ds in list(self.data.items()) + [('infer', {'': None})]:
            for ds_id in id_ds.keys():
                for epoch in schedule_epochs:
                    ops = get_current_items(batch_ops, run_modes=mode, epoch=epoch, ds_id=ds_id)
                    # We have to do an instance check again since the user could technically use a scheduler that has a
                    # Batch Op at one point, but some other Op (or None) at a different point
                    ops = [op for op in ops if isinstance(op, Batch)]
                    assert len(ops) < 2, "You may provide at most 1 batch op for a given epoch/mode/ds_id combination"

    def _verify_dataset(self, dataset: DataSource, **kwargs) -> bool:
        """A helper function to ensure that all of a dataset's arguments are correct.

        Args:
            dataset: The dataset to validate against.
            **kwargs: A selection of variables and their values which must be validated.

        Returns:
            True iff the `dataset` is a PyTorch Dataset (as opposed to a DataLoader or tf.data.Dataset).

        Raises:
            AssertionError: If the `kwargs` are found to be invalid based on the given `dataset`.
            ValueError: If the `dataset` is of an unknown type.
        """
        if isinstance(dataset, Dataset):
            # batch_size check
            for batch_size in get_current_items(to_list(self.batch_size)):
                assert isinstance(batch_size, int), "unsupported batch_size format: {}".format(type(batch_size))
            # ops check
            for op in get_current_items(self.ops):
                assert isinstance(op, NumpyOp), "unsupported op format, must provide NumpyOp in Pipeline"
            # num_process check
            assert isinstance(self.num_process, int), "number of processes must be an integer"
            return True
        elif isinstance(dataset, (DataLoader, tf.data.Dataset)):
            if kwargs['batch_size'] is not None:
                warn("batch_size will only be used for built-in dataset")
            if kwargs['ops'] is not None:
                warn("ops will only be used for built-in dataset")
            if kwargs['num_process'] is not None:
                warn("num_process will only be used for built-in dataset")
            return False
        else:
            raise ValueError("Unsupported dataset type: {}".format(type(dataset)))

    def _get_op_split(self, mode: str, epoch: int,
                      ds_id: Union[str, Iterable[str]]) -> Tuple[List[NumpyOp], Batch, List[NumpyOp]]:
        """Figure out which ops are pre-batch vs post-batch.

        Args:
            mode: The current mode.
            epoch: The current epoch.
            ds_id: The current dataset id(s).

        Returns:
            (instance ops, batch info, batch ops).
        """
        batch_info = Batch()
        instance_ops = []
        batch_ops = []
        ops = get_current_items(self.ops, run_modes=mode, epoch=epoch, ds_id=ds_id)
        target = instance_ops
        for op in ops:
            if isinstance(op, Batch):
                batch_info = op
                target = batch_ops
                continue
            target.append(op)
        return instance_ops, batch_info, batch_ops

    def get_modes(self, epoch: Optional[int] = None) -> Set[str]:
        """Get the modes for which the Pipeline has data.

        Args:
            epoch: The current epoch index

        Returns:
            The modes for which the Pipeline has data.
        """
        if epoch is None:
            all_modes = set(self.data.keys())
        else:
            all_modes = []
            for mode, datasets in self.data.items():
                for dataset in datasets.values():
                    if isinstance(dataset, Scheduler):
                        dataset = dataset.get_current_value(epoch)
                    if dataset:
                        all_modes.append(mode)
        return to_set(all_modes)

    def get_ds_ids(self, epoch: int, mode: str) -> List[str]:
        """Get the ds_ids for a given epoch and mode.

        Args:
            epoch: The current epoch index.
            mode: The current execution mode.

        Returns:
            The ds_ids of the current epoch and mode.
        """
        ds_ids = []
        if mode in self.data:
            datasets = self.data[mode]
            for ds_id, dataset in datasets.items():
                if isinstance(dataset, Scheduler):
                    dataset = dataset.get_current_value(epoch)
                if dataset:
                    ds_ids.append(ds_id)
        return ds_ids

    def benchmark(self,
                  mode: str = "train",
                  epoch: int = 1,
                  ds_id: Optional[str] = None,
                  num_steps: int = 1000,
                  log_interval: int = 100,
                  detailed: bool = True) -> None:
        """Benchmark the pipeline processing speed.

        Args:
            mode: The execution mode to benchmark. This can be 'train', 'eval' or 'test'.
            epoch: The epoch index to benchmark. Note that epoch indices are 1-indexed.
            ds_id: The ds_id to benchmark. If None, all ds_ids will be benchmarked.
            num_steps: The number of steps over which to perform the benchmark.
            log_interval: The logging interval.
            detailed: Whether to display the detailed time used by each operator.
        """
        if ds_id is None:
            ds_ids = self.get_ds_ids(epoch=epoch, mode=mode)
        else:
            ds_ids = [ds_id]

        for ds_id in ds_ids:
            with self(mode=mode, epoch=epoch, ds_id=ds_id, steps_per_epoch=num_steps) as loader:
                if isinstance(loader, tf.data.Dataset):
                    loader = loader.take(num_steps)
                start = time.perf_counter()
                for idx, _ in enumerate(loader, start=1):
                    if idx % log_interval == 0:
                        duration = time.perf_counter() - start
                        iters_per_sec = log_interval / duration
                        ds_str = f"Dataset: {ds_id}, " if ds_id else ""
                        print("FastEstimator-Benchmark ({}): {}Step: {}, Epoch: {}, Steps/sec: {}".format(
                            mode.capitalize(), ds_str, idx, epoch, iters_per_sec))
                        start = time.perf_counter()
                # Pipeline Operations Benchmarking when using FEDataset
                if isinstance(loader, FEDataLoader) and isinstance(loader.dataset, OpDataset) and detailed:
                    # (n_visited, duration)
                    duration_list = np.zeros(shape=(len(self.ctx_ops) + 1 + len(self.ctx_batch_ops), 2))
                    data_len = len(loader.dataset)
                    ds_str = f", Dataset: {ds_id}" if ds_id else ""
                    print("\nBreakdown of time taken by Pipeline Operations (Mode: {}, Epoch: {}{})\n".format(
                        mode.capitalize(), epoch, ds_str))
                    extra_memory_management_time = 0
                    for _ in range(log_interval):
                        filtered = False
                        batch = []
                        index = np.random.randint(data_len)
                        items = deepcopy(loader.dataset.dataset[index])
                        if isinstance(items, list):
                            while not batch:
                                filtered = False
                                # BatchDataset may randomly sample the same elements multiple times, avoid reprocessing
                                unique_samples = set()
                                for item in items:
                                    if id(item) not in unique_samples:
                                        for i, op in enumerate(self.ctx_ops):
                                            start = time.perf_counter()
                                            op_data = forward_numpyop([op], item, {'mode': loader.dataset.mode})
                                            duration = time.perf_counter() - start
                                            duration_list[i][0] += 1
                                            duration_list[i][1] += duration
                                            if isinstance(op_data, FilteredData):
                                                filtered = True
                                                break
                                        unique_samples.add(id(item))
                                if not filtered:
                                    batch = items
                        else:
                            while len(batch) < (self.ctx_batch_size or 1):
                                filtered = False
                                for i, op in enumerate(self.ctx_ops):
                                    start = time.perf_counter()
                                    op_data = forward_numpyop([op], items, {'mode': mode})
                                    duration = time.perf_counter() - start
                                    duration_list[i][0] += 1
                                    duration_list[i][1] += duration
                                    if isinstance(op_data, FilteredData):
                                        filtered = True
                                        break
                                if not filtered:
                                    batch.append(items)
                                index = np.random.randint(data_len)
                                items = deepcopy(loader.dataset.dataset[index])
                        if not filtered:
                            # Perform the batching
                            start = time.perf_counter()
                            batch = self.ctx_batch_info.collate_fn(batch)
                            duration = time.perf_counter() - start
                            duration_list[len(self.ctx_ops)][0] += 1
                            duration_list[len(self.ctx_ops)][1] += duration
                            # Perform batch ops
                            start = time.perf_counter()
                            # Transform to numpy to not bias against the first op in the batch_op chain
                            batch = to_tensor(batch, target_type='np')
                            extra_memory_management_time += time.perf_counter() - start

                            for i, op in enumerate(self.ctx_batch_ops, start=len(self.ctx_ops) + 1):
                                start = time.perf_counter()
                                op_data = forward_numpyop([op], data=batch, state={'mode': mode}, batched='np')
                                duration = time.perf_counter() - start
                                duration_list[i][0] += 1
                                duration_list[i][1] += duration
                                if isinstance(op_data, FilteredData):
                                    break
                            # Count extra time needed to cast data back to torch
                            start = time.perf_counter()
                            to_tensor(batch, target_type='torch', shared_memory=True)
                            extra_memory_management_time += time.perf_counter() - start

                    if self.ctx_batch_ops:
                        # Extra memory management penalty is only incurred when using batch ops
                        duration_list[len(self.ctx_ops)][1] += extra_memory_management_time

                    total_time = np.sum(duration_list[:, 1])
                    normalized_times_ms = 1000 * duration_list[:, 1] / np.maximum(duration_list[:, 0], 1)
                    op_names = ["Op"]

                    for op in self.ctx_ops + [self.ctx_batch_info] + self.ctx_batch_ops:
                        if isinstance(op, Sometimes) and op.op:
                            op_names.append(op.__class__.__name__ + " (" + op.op.__class__.__name__ + ")")
                        elif isinstance(op, Repeat) and op.op:
                            op_names.append(op.__class__.__name__ + " (" + op.op.__class__.__name__ + ")")
                        elif isinstance(op, OneOf) and op.ops:
                            op_names.append(op.__class__.__name__ + " (" +
                                            ", ".join([sub_op.__class__.__name__ for sub_op in op.ops]) + ")")
                        elif isinstance(op, Fuse) and op.ops:
                            op_names.append(op.__class__.__name__ + " (" +
                                            ", ".join([sub_op.__class__.__name__ for sub_op in op.ops]) + ")")
                        elif isinstance(op, Batch):
                            op_names.append("<Collating Batch>")
                        else:
                            op_names.append(op.__class__.__name__)

                    max_op_len = max(len(op_name) for op_name in op_names)
                    max_in_len = max(
                        [len(", ".join(op.inputs))
                         for op in self.ctx_ops + [self.ctx_batch_info] + self.ctx_batch_ops] + [len("Inputs")])
                    max_out_len = max([
                        len(", ".join(op.outputs)) for op in self.ctx_ops + [self.ctx_batch_info] + self.ctx_batch_ops
                    ] + [len("Outputs")])
                    ms_visit_len = max(len("{:.3f}".format(max(normalized_times_ms))), len("ms / Visit"))
                    visit_len = max(len(f"{int(np.max(duration_list[:, 0]))}"), len("Visits"))

                    print("{}: {}: {}: {}: {}: {}".format("Op".ljust(max_op_len + 1),
                                                          "Inputs".ljust(max_in_len + 1),
                                                          "Outputs".ljust(max_out_len + 1),
                                                          "ms / Visit".ljust(ms_visit_len + 1),
                                                          "Visits".ljust(visit_len + 1),
                                                          "Time (Total)".rjust(12)))
                    print("-" * (max_op_len + max_in_len + max_out_len + visit_len + 37))
                    for i, op in enumerate(self.ctx_ops + [self.ctx_batch_info] + self.ctx_batch_ops):
                        print("{}: {}: {}: {}: {}: {:11.2f}%".format(
                            op_names[i + 1].ljust(max_op_len + 1),
                            ", ".join(op.inputs).ljust(max_in_len + 1),
                            ", ".join(op.outputs).ljust(max_out_len + 1),
                            "{:.3f}".format(normalized_times_ms[i]).ljust(ms_visit_len + 1),
                            str(int(duration_list[i][0])).ljust(visit_len + 1),
                            100 * duration_list[i][1] / total_time))
                    if self.ctx_batch_ops:
                        penalty = round(
                            100 * (duration_list[len(self.ctx_ops)][1] - extra_memory_management_time) /
                            duration_list[len(self.ctx_ops)][1],
                            1)
                        print(f"\nNote that collation time would be cut by ~{penalty}% if there were no batched ops.")
                print("\n")  # to make printing more obvious

    def get_scheduled_items(self, mode: str) -> List[Any]:
        """Get a list of items considered for scheduling.

        Args:
            mode: Current execution mode.

        Returns:
            List of schedulable items in Pipeline.
        """
        all_items = self.ops + [self.batch_size] + list(self.data[mode].values())
        return all_items

    def get_epochs_with_data(self, total_epochs: int, mode: str) -> Set[int]:
        """Get a set of epoch indices that contains data given mode.

        Args:
            total_epochs: Total number of epochs.
            mode: Current execution mode.

        Returns:
            Set of epoch indices.
        """
        epochs_with_data = set()
        datasets = self.data[mode]
        for dataset in datasets.values():
            if isinstance(dataset, Scheduler):
                epochs_with_data_ds = set(epoch for epoch in range(1, total_epochs + 1)
                                          if dataset.get_current_value(epoch))
                epochs_with_data = epochs_with_data | epochs_with_data_ds
            elif dataset:
                epochs_with_data_ds = set(range(1, total_epochs + 1))
                epochs_with_data = epochs_with_data | epochs_with_data_ds
                break
        return epochs_with_data

    def transform(self, data: Dict[str, Any], mode: str, epoch: int = 1, ds_id: str = '',
                  target_type: str = 'np') -> Union[Dict[str, Any], FilteredData]:
        """Apply all pipeline operations on a given data instance for the specified `mode` and `epoch`.

        Args:
            data: Input data in dictionary format.
            mode: The execution mode in which to run. This can be "train", "eval", "test" or "infer".
            epoch: The epoch index to run. Note that epoch indices are 1-indexed.
            ds_id: The current dataset id.
            target_type: What kind of tensor(s) to create. One of "tf", "torch", or "np".

        Returns:
            The transformed data.
        """
        data = deepcopy(data)
        instance_ops, batch_spec, batch_ops = self._get_op_split(mode=mode, epoch=epoch, ds_id=ds_id)
        state = {'mode': mode}
        op_data = forward_numpyop(instance_ops, data, state)
        if isinstance(op_data, FilteredData):
            return op_data
        data = batch_spec.collate_fn([data])
        op_data = forward_numpyop(batch_ops, data, state, batched='torch')
        if isinstance(op_data, FilteredData):
            return op_data
        return to_tensor(data, target_type=target_type)

    @overload
    def get_results(self,
                    mode: str = "train",
                    epoch: int = 1,
                    ds_id: str = '',
                    num_steps: Literal[1] = 1,
                    shuffle: bool = False) -> Dict[str, Any]:
        ...

    @overload
    def get_results(self,
                    mode: str = "train",
                    epoch: int = 1,
                    ds_id: str = '',
                    num_steps: int = 1,
                    shuffle: bool = False) -> List[Dict[str, Any]]:
        ...

    def get_results(self,
                    mode: str = "train",
                    epoch: int = 1,
                    ds_id: str = '',
                    num_steps: int = 1,
                    shuffle: bool = False) -> Union[List[Dict[str, Any]], Dict[str, Any]]:
        """Get sample Pipeline outputs.

        Args:
            mode: The execution mode in which to run. This can be "train", "eval", or "test".
            epoch: The epoch index to run. Note that epoch indices are 1-indexed.
            num_steps: Number of steps (batches) to get.
            shuffle: Whether to use shuffling.
            ds_id: The current dataset id.

        Returns:
            A list of batches of Pipeline outputs.
        """
        results = []
        with self(mode=mode, epoch=epoch, ds_id=ds_id, shuffle=shuffle) as loader:
            if isinstance(loader, tf.data.Dataset):
                loader = loader.take(num_steps)
            if loader:
                for idx, batch in enumerate(loader, start=1):
                    results.append(batch)
                    if idx == num_steps:
                        break
                if len(results) == 1:
                    results = results[0]
            return results

    def __call__(self,
                 mode: str,
                 epoch: int = 1,
                 ds_id: str = '',
                 shuffle: Optional[bool] = None,
                 steps_per_epoch: Optional[int] = None,
                 output_keys: Optional[Set[str]] = None) -> Self:
        """Prepare this Pipeline for a given `mode` and `epoch`.

        A given pipeline can only provide one loader at a time. This helps to prevent issues with multi-threading.

        ```python
        pipe = Pipeline(...)
        with pipe(mode='eval', epoch=2) as loader:
            for batch in loader:
                print(batch)
        ```

        Args:
            mode: The execution mode for the loader. This can be 'train', 'eval' or 'test'.
            epoch: The epoch index for the loader. Note that epoch indices are 1-indexed.
            ds_id: The dataset id to consider for the loader.
            shuffle: Whether to shuffle the data. If None, the value for shuffle is based on mode. NOTE: This argument
                is only used with FastEstimator Datasets.
            steps_per_epoch: Training or Evaluation will be cut short or extended to complete N steps even if loader is
                not yet exhausted. If None, all data will be used.
            output_keys: What keys can be produced from pipeline. If None or empty, all keys will be considered.

        Returns:
            The pipeline, but with `mode` and `epoch` set for use in a loader.

        Raises:
            ValueError: If called while the pipeline already has an active loader.
        """
        # Make sure that a loader isn't currently instantiated with other settings
        acquired = self.ctx_lock.acquire(blocking=False)
        if not acquired:
            raise ValueError("You cannot invoke a Pipeline's __call__ method while it already has an active loader.")
        self.ctx_mode = mode
        self.ctx_epoch = epoch
        self.ctx_ds_id = ds_id
        self.ctx_shuffle = mode == 'train' if shuffle is None else shuffle
        self.ctx_steps_per_epoch = steps_per_epoch
        self.ctx_output_keys = output_keys or set()
        dataset = self.data[self.ctx_mode][self.ctx_ds_id]
        if isinstance(dataset, Scheduler):
            dataset = dataset.get_current_value(self.ctx_epoch)
        self.ctx_dataset = dataset
        if isinstance(dataset, InterleaveDataset):
            # if this is InterleaveDataset, then build multiple ops, batch_info, and batch_ops.
            self.ctx_ops = []
            ctx_batch_infos: List[Batch] = []
            ctx_batch_ops_lists: List[List[NumpyOp]] = []
            for tag in dataset.tags:
                id_tags = {ds_id, tag} if isinstance(tag, str) else ds_id
                ctx_ops, ctx_batch_info, ctx_batch_ops = self._get_op_split(mode=mode, epoch=epoch, ds_id=id_tags)
                self.ctx_ops.append(ctx_ops)
                ctx_batch_infos.append(ctx_batch_info)
                ctx_batch_ops_lists.append(ctx_batch_ops)
            # Decide on the batch size (this might still be ignored later if the user is using a BatchDataset)
            self.ctx_batch_size = [ctx_batch_info.batch_size for ctx_batch_info in ctx_batch_infos]
            # drop_last and collate_fn for different dataset must be the same, since it is the same dataloader.
            same_drop_last = len(set(ctx_batch_info.drop_last for ctx_batch_info in ctx_batch_infos)) == 1
            same_collate = len(set(ctx_batch_info.collate_fn for ctx_batch_info in ctx_batch_infos)) == 1
            if not same_collate:
                pad_val_0 = ctx_batch_infos[0]._pad_value
                if pad_val_0 is not None and all([pad_val_0 == pv._pad_value for pv in ctx_batch_infos[1:]]):
                    # If the user is using pad values and all the pad values are the same, then even though the
                    # collate functions are bound to different instances, they are all effectively the same function
                    same_collate = True
            assert same_drop_last and same_collate, \
                "when using InterleaveDataset, the drop_last and collate behavior for all datasets must be the same"
            # Interleave dataset at current scope does not support batch level, need to make sure batchops are the same
            assert all(ctx_batch_ops_lists[0] == batch_ops for batch_ops in ctx_batch_ops_lists[1:]), \
                "Current InterleaveDataset does not support different dataset behaviors after the BatchOp."
            self.ctx_batch_ops = ctx_batch_ops_lists[0]
            self.ctx_batch_info = ctx_batch_infos[0]
            # fill in the correct batch sizes
            for idx, batch_size in enumerate(self.ctx_batch_size):
                if batch_size is None:
                    batch_size = self.batch_size
                    if isinstance(batch_size, Scheduler):
                        batch_size = batch_size.get_current_value(self.ctx_epoch)
                    self.ctx_batch_size[idx] = batch_size
        else:
            self.ctx_ops, self.ctx_batch_info, self.ctx_batch_ops = self._get_op_split(mode=mode,
                                                                                       epoch=epoch,
                                                                                       ds_id=ds_id)
            # Decide on the batch size (this might still be ignored later if the user is using a BatchDataset)
            self.ctx_batch_size = self.ctx_batch_info.batch_size
            if self.ctx_batch_size is None:
                # batch size
                batch_size = self.batch_size
                if isinstance(batch_size, Scheduler):
                    batch_size = batch_size.get_current_value(self.ctx_epoch)
                self.ctx_batch_size = batch_size
        # Figure out which input keys are required by the batch ops (so they don't get pruned too early)
        self.ctx_batch_input_keys = set()
        batch_produced_keys = set()
        for op in get_current_items(self.ctx_batch_ops, mode, epoch, ds_id=ds_id):
            self.ctx_batch_input_keys.update(set(key for key in op.inputs if key not in batch_produced_keys))
            batch_produced_keys.update(op.outputs)
        self.ctx_lock.release()
        return self

    def __enter__(self) -> Union[DataLoader, tf.data.Dataset]:
        """Get a data loader from the Pipeline for the current epoch and mode.

        A given pipeline can only provide one loader at a time. This helps to prevent issues with multi-threading.

        ```python
        pipe = Pipeline(...)
        with pipe(mode='eval', epoch=2) as loader:
            for batch in loader:
                print(batch)
        ```

        Returns:
            A data loader for the current `mode` and `epoch`.

        Raises:
            ValueError: If called while the pipeline already has an active loader.
        """
        acquired = self.ctx_lock.acquire(blocking=False)
        if not acquired:
            raise ValueError("You cannot generate a new loader from this Pipeline before closing its other loader.")
        # Release the lock if arguments are invalid so that people in Jupyter / debug consoles don't get stuck
        if self.ctx_mode not in self.data:
            self.ctx_lock.release()
            raise KeyError(f"Pipeline has no data for mode '{self.ctx_mode}'")
        if self.ctx_ds_id not in self.data[self.ctx_mode]:
            self.ctx_lock.release()
            raise KeyError(f"The dataset id '{self.ctx_ds_id}' is not present in {self.ctx_mode} mode")
        if isinstance(self.ctx_dataset, InterleaveDataset):
            # Results will be immediately converted to tensors, so don't need deep_remainder
            op_datasets = [
                OpDataset(ds,
                          ctx_ops,
                          self.ctx_mode,
                          self.ctx_output_keys | self.ctx_batch_input_keys if self.ctx_output_keys else None,
                          deep_remainder=False) for ds,
                ctx_ops in zip(self.ctx_dataset.datasets, self.ctx_ops)
            ]
            self.ctx_dataset.op_datasets = op_datasets
            # when batch_size is None, then it indicates each sample is a batch
            self.ctx_dataset.set_batch_sizes([batch_size or 1 for batch_size in self.ctx_batch_size])
            postprocess_fn = None
            if self.ctx_batch_ops:
                postprocess_fn = functools.partial(_batch_postprocess,
                                                   ops=self.ctx_batch_ops,
                                                   output_keys=self.ctx_output_keys,
                                                   mode=self.ctx_mode)
            try:
                data = FEDataLoader(self.ctx_dataset,
                                    postprocess_fn=postprocess_fn,
                                    batch_size=None,
                                    shuffle=self.ctx_shuffle,
                                    steps_per_epoch=self.ctx_steps_per_epoch,
                                    num_workers=self.num_process,
                                    drop_last=self.ctx_batch_info.drop_last,
                                    collate_fn=self.ctx_batch_info.collate_fn)
            except ValueError as err:
                self.ctx_lock.release()
                raise err
            self.ctx_loader = data
        elif isinstance(self.ctx_dataset, Dataset):
            # Results will be immediately converted to tensors, so don't need deep_remainder
            op_dataset = OpDataset(self.ctx_dataset,
                                   self.ctx_ops,
                                   self.ctx_mode,
                                   self.ctx_output_keys | self.ctx_batch_input_keys if self.ctx_output_keys else None,
                                   deep_remainder=False)
            # check whether to batch the data
            batch_size = None if op_dataset.fe_batch else self.ctx_batch_size
            # Figure out whether a postprocessing function is needed (for batched ops)
            postprocess_fn = None
            if self.ctx_batch_ops:
                postprocess_fn = functools.partial(_batch_postprocess,
                                                   ops=self.ctx_batch_ops,
                                                   output_keys=self.ctx_output_keys,
                                                   mode=self.ctx_mode)
            try:
                data = FEDataLoader(op_dataset,
                                    postprocess_fn=postprocess_fn,
                                    batch_size=batch_size,
                                    shuffle=self.ctx_shuffle,
                                    steps_per_epoch=self.ctx_steps_per_epoch,
                                    num_workers=self.num_process,
                                    drop_last=self.ctx_batch_info.drop_last,
                                    collate_fn=self.ctx_batch_info.collate_fn)
            except ValueError as err:
                self.ctx_lock.release()
                raise err
            self.ctx_loader = data
        else:
            self.ctx_loader = self.ctx_dataset
        return self.ctx_loader

    def __exit__(self, *exc: Tuple[Optional[Type], Optional[Exception], Optional[Any]]) -> None:
        if self.ctx_loader is not None and hasattr(self.ctx_loader, 'shutdown'):
            self.ctx_loader.shutdown()
            self.ctx_loader = None
        # Manually triggering gc here seems to be necessary in order to avoid problems with repeated invocations of FE
        # killing one another through multi-processing.
        gc.collect()
        self.ctx_lock.release()

benchmark

Benchmark the pipeline processing speed.

Parameters:

Name Type Description Default
mode str

The execution mode to benchmark. This can be 'train', 'eval' or 'test'.

'train'
epoch int

The epoch index to benchmark. Note that epoch indices are 1-indexed.

1
ds_id Optional[str]

The ds_id to benchmark. If None, all ds_ids will be benchmarked.

None
num_steps int

The number of steps over which to perform the benchmark.

1000
log_interval int

The logging interval.

100
detailed bool

Whether to display the detailed time used by each operator.

True
Source code in fastestimator/fastestimator/pipeline.py
def benchmark(self,
              mode: str = "train",
              epoch: int = 1,
              ds_id: Optional[str] = None,
              num_steps: int = 1000,
              log_interval: int = 100,
              detailed: bool = True) -> None:
    """Benchmark the pipeline processing speed.

    Args:
        mode: The execution mode to benchmark. This can be 'train', 'eval' or 'test'.
        epoch: The epoch index to benchmark. Note that epoch indices are 1-indexed.
        ds_id: The ds_id to benchmark. If None, all ds_ids will be benchmarked.
        num_steps: The number of steps over which to perform the benchmark.
        log_interval: The logging interval.
        detailed: Whether to display the detailed time used by each operator.
    """
    if ds_id is None:
        ds_ids = self.get_ds_ids(epoch=epoch, mode=mode)
    else:
        ds_ids = [ds_id]

    for ds_id in ds_ids:
        with self(mode=mode, epoch=epoch, ds_id=ds_id, steps_per_epoch=num_steps) as loader:
            if isinstance(loader, tf.data.Dataset):
                loader = loader.take(num_steps)
            start = time.perf_counter()
            for idx, _ in enumerate(loader, start=1):
                if idx % log_interval == 0:
                    duration = time.perf_counter() - start
                    iters_per_sec = log_interval / duration
                    ds_str = f"Dataset: {ds_id}, " if ds_id else ""
                    print("FastEstimator-Benchmark ({}): {}Step: {}, Epoch: {}, Steps/sec: {}".format(
                        mode.capitalize(), ds_str, idx, epoch, iters_per_sec))
                    start = time.perf_counter()
            # Pipeline Operations Benchmarking when using FEDataset
            if isinstance(loader, FEDataLoader) and isinstance(loader.dataset, OpDataset) and detailed:
                # (n_visited, duration)
                duration_list = np.zeros(shape=(len(self.ctx_ops) + 1 + len(self.ctx_batch_ops), 2))
                data_len = len(loader.dataset)
                ds_str = f", Dataset: {ds_id}" if ds_id else ""
                print("\nBreakdown of time taken by Pipeline Operations (Mode: {}, Epoch: {}{})\n".format(
                    mode.capitalize(), epoch, ds_str))
                extra_memory_management_time = 0
                for _ in range(log_interval):
                    filtered = False
                    batch = []
                    index = np.random.randint(data_len)
                    items = deepcopy(loader.dataset.dataset[index])
                    if isinstance(items, list):
                        while not batch:
                            filtered = False
                            # BatchDataset may randomly sample the same elements multiple times, avoid reprocessing
                            unique_samples = set()
                            for item in items:
                                if id(item) not in unique_samples:
                                    for i, op in enumerate(self.ctx_ops):
                                        start = time.perf_counter()
                                        op_data = forward_numpyop([op], item, {'mode': loader.dataset.mode})
                                        duration = time.perf_counter() - start
                                        duration_list[i][0] += 1
                                        duration_list[i][1] += duration
                                        if isinstance(op_data, FilteredData):
                                            filtered = True
                                            break
                                    unique_samples.add(id(item))
                            if not filtered:
                                batch = items
                    else:
                        while len(batch) < (self.ctx_batch_size or 1):
                            filtered = False
                            for i, op in enumerate(self.ctx_ops):
                                start = time.perf_counter()
                                op_data = forward_numpyop([op], items, {'mode': mode})
                                duration = time.perf_counter() - start
                                duration_list[i][0] += 1
                                duration_list[i][1] += duration
                                if isinstance(op_data, FilteredData):
                                    filtered = True
                                    break
                            if not filtered:
                                batch.append(items)
                            index = np.random.randint(data_len)
                            items = deepcopy(loader.dataset.dataset[index])
                    if not filtered:
                        # Perform the batching
                        start = time.perf_counter()
                        batch = self.ctx_batch_info.collate_fn(batch)
                        duration = time.perf_counter() - start
                        duration_list[len(self.ctx_ops)][0] += 1
                        duration_list[len(self.ctx_ops)][1] += duration
                        # Perform batch ops
                        start = time.perf_counter()
                        # Transform to numpy to not bias against the first op in the batch_op chain
                        batch = to_tensor(batch, target_type='np')
                        extra_memory_management_time += time.perf_counter() - start

                        for i, op in enumerate(self.ctx_batch_ops, start=len(self.ctx_ops) + 1):
                            start = time.perf_counter()
                            op_data = forward_numpyop([op], data=batch, state={'mode': mode}, batched='np')
                            duration = time.perf_counter() - start
                            duration_list[i][0] += 1
                            duration_list[i][1] += duration
                            if isinstance(op_data, FilteredData):
                                break
                        # Count extra time needed to cast data back to torch
                        start = time.perf_counter()
                        to_tensor(batch, target_type='torch', shared_memory=True)
                        extra_memory_management_time += time.perf_counter() - start

                if self.ctx_batch_ops:
                    # Extra memory management penalty is only incurred when using batch ops
                    duration_list[len(self.ctx_ops)][1] += extra_memory_management_time

                total_time = np.sum(duration_list[:, 1])
                normalized_times_ms = 1000 * duration_list[:, 1] / np.maximum(duration_list[:, 0], 1)
                op_names = ["Op"]

                for op in self.ctx_ops + [self.ctx_batch_info] + self.ctx_batch_ops:
                    if isinstance(op, Sometimes) and op.op:
                        op_names.append(op.__class__.__name__ + " (" + op.op.__class__.__name__ + ")")
                    elif isinstance(op, Repeat) and op.op:
                        op_names.append(op.__class__.__name__ + " (" + op.op.__class__.__name__ + ")")
                    elif isinstance(op, OneOf) and op.ops:
                        op_names.append(op.__class__.__name__ + " (" +
                                        ", ".join([sub_op.__class__.__name__ for sub_op in op.ops]) + ")")
                    elif isinstance(op, Fuse) and op.ops:
                        op_names.append(op.__class__.__name__ + " (" +
                                        ", ".join([sub_op.__class__.__name__ for sub_op in op.ops]) + ")")
                    elif isinstance(op, Batch):
                        op_names.append("<Collating Batch>")
                    else:
                        op_names.append(op.__class__.__name__)

                max_op_len = max(len(op_name) for op_name in op_names)
                max_in_len = max(
                    [len(", ".join(op.inputs))
                     for op in self.ctx_ops + [self.ctx_batch_info] + self.ctx_batch_ops] + [len("Inputs")])
                max_out_len = max([
                    len(", ".join(op.outputs)) for op in self.ctx_ops + [self.ctx_batch_info] + self.ctx_batch_ops
                ] + [len("Outputs")])
                ms_visit_len = max(len("{:.3f}".format(max(normalized_times_ms))), len("ms / Visit"))
                visit_len = max(len(f"{int(np.max(duration_list[:, 0]))}"), len("Visits"))

                print("{}: {}: {}: {}: {}: {}".format("Op".ljust(max_op_len + 1),
                                                      "Inputs".ljust(max_in_len + 1),
                                                      "Outputs".ljust(max_out_len + 1),
                                                      "ms / Visit".ljust(ms_visit_len + 1),
                                                      "Visits".ljust(visit_len + 1),
                                                      "Time (Total)".rjust(12)))
                print("-" * (max_op_len + max_in_len + max_out_len + visit_len + 37))
                for i, op in enumerate(self.ctx_ops + [self.ctx_batch_info] + self.ctx_batch_ops):
                    print("{}: {}: {}: {}: {}: {:11.2f}%".format(
                        op_names[i + 1].ljust(max_op_len + 1),
                        ", ".join(op.inputs).ljust(max_in_len + 1),
                        ", ".join(op.outputs).ljust(max_out_len + 1),
                        "{:.3f}".format(normalized_times_ms[i]).ljust(ms_visit_len + 1),
                        str(int(duration_list[i][0])).ljust(visit_len + 1),
                        100 * duration_list[i][1] / total_time))
                if self.ctx_batch_ops:
                    penalty = round(
                        100 * (duration_list[len(self.ctx_ops)][1] - extra_memory_management_time) /
                        duration_list[len(self.ctx_ops)][1],
                        1)
                    print(f"\nNote that collation time would be cut by ~{penalty}% if there were no batched ops.")
            print("\n")  # to make printing more obvious

get_ds_ids

Get the ds_ids for a given epoch and mode.

Parameters:

Name Type Description Default
epoch int

The current epoch index.

required
mode str

The current execution mode.

required

Returns:

Type Description
List[str]

The ds_ids of the current epoch and mode.

Source code in fastestimator/fastestimator/pipeline.py
def get_ds_ids(self, epoch: int, mode: str) -> List[str]:
    """Get the ds_ids for a given epoch and mode.

    Args:
        epoch: The current epoch index.
        mode: The current execution mode.

    Returns:
        The ds_ids of the current epoch and mode.
    """
    ds_ids = []
    if mode in self.data:
        datasets = self.data[mode]
        for ds_id, dataset in datasets.items():
            if isinstance(dataset, Scheduler):
                dataset = dataset.get_current_value(epoch)
            if dataset:
                ds_ids.append(ds_id)
    return ds_ids

get_epochs_with_data

Get a set of epoch indices that contains data given mode.

Parameters:

Name Type Description Default
total_epochs int

Total number of epochs.

required
mode str

Current execution mode.

required

Returns:

Type Description
Set[int]

Set of epoch indices.

Source code in fastestimator/fastestimator/pipeline.py
def get_epochs_with_data(self, total_epochs: int, mode: str) -> Set[int]:
    """Get a set of epoch indices that contains data given mode.

    Args:
        total_epochs: Total number of epochs.
        mode: Current execution mode.

    Returns:
        Set of epoch indices.
    """
    epochs_with_data = set()
    datasets = self.data[mode]
    for dataset in datasets.values():
        if isinstance(dataset, Scheduler):
            epochs_with_data_ds = set(epoch for epoch in range(1, total_epochs + 1)
                                      if dataset.get_current_value(epoch))
            epochs_with_data = epochs_with_data | epochs_with_data_ds
        elif dataset:
            epochs_with_data_ds = set(range(1, total_epochs + 1))
            epochs_with_data = epochs_with_data | epochs_with_data_ds
            break
    return epochs_with_data

get_modes

Get the modes for which the Pipeline has data.

Parameters:

Name Type Description Default
epoch Optional[int]

The current epoch index

None

Returns:

Type Description
Set[str]

The modes for which the Pipeline has data.

Source code in fastestimator/fastestimator/pipeline.py
def get_modes(self, epoch: Optional[int] = None) -> Set[str]:
    """Get the modes for which the Pipeline has data.

    Args:
        epoch: The current epoch index

    Returns:
        The modes for which the Pipeline has data.
    """
    if epoch is None:
        all_modes = set(self.data.keys())
    else:
        all_modes = []
        for mode, datasets in self.data.items():
            for dataset in datasets.values():
                if isinstance(dataset, Scheduler):
                    dataset = dataset.get_current_value(epoch)
                if dataset:
                    all_modes.append(mode)
    return to_set(all_modes)

get_results

Get sample Pipeline outputs.

Parameters:

Name Type Description Default
mode str

The execution mode in which to run. This can be "train", "eval", or "test".

'train'
epoch int

The epoch index to run. Note that epoch indices are 1-indexed.

1
num_steps int

Number of steps (batches) to get.

1
shuffle bool

Whether to use shuffling.

False
ds_id str

The current dataset id.

''

Returns:

Type Description
Union[List[Dict[str, Any]], Dict[str, Any]]

A list of batches of Pipeline outputs.

Source code in fastestimator/fastestimator/pipeline.py
def get_results(self,
                mode: str = "train",
                epoch: int = 1,
                ds_id: str = '',
                num_steps: int = 1,
                shuffle: bool = False) -> Union[List[Dict[str, Any]], Dict[str, Any]]:
    """Get sample Pipeline outputs.

    Args:
        mode: The execution mode in which to run. This can be "train", "eval", or "test".
        epoch: The epoch index to run. Note that epoch indices are 1-indexed.
        num_steps: Number of steps (batches) to get.
        shuffle: Whether to use shuffling.
        ds_id: The current dataset id.

    Returns:
        A list of batches of Pipeline outputs.
    """
    results = []
    with self(mode=mode, epoch=epoch, ds_id=ds_id, shuffle=shuffle) as loader:
        if isinstance(loader, tf.data.Dataset):
            loader = loader.take(num_steps)
        if loader:
            for idx, batch in enumerate(loader, start=1):
                results.append(batch)
                if idx == num_steps:
                    break
            if len(results) == 1:
                results = results[0]
        return results

get_scheduled_items

Get a list of items considered for scheduling.

Parameters:

Name Type Description Default
mode str

Current execution mode.

required

Returns:

Type Description
List[Any]

List of schedulable items in Pipeline.

Source code in fastestimator/fastestimator/pipeline.py
def get_scheduled_items(self, mode: str) -> List[Any]:
    """Get a list of items considered for scheduling.

    Args:
        mode: Current execution mode.

    Returns:
        List of schedulable items in Pipeline.
    """
    all_items = self.ops + [self.batch_size] + list(self.data[mode].values())
    return all_items

transform

Apply all pipeline operations on a given data instance for the specified mode and epoch.

Parameters:

Name Type Description Default
data Dict[str, Any]

Input data in dictionary format.

required
mode str

The execution mode in which to run. This can be "train", "eval", "test" or "infer".

required
epoch int

The epoch index to run. Note that epoch indices are 1-indexed.

1
ds_id str

The current dataset id.

''
target_type str

What kind of tensor(s) to create. One of "tf", "torch", or "np".

'np'

Returns:

Type Description
Union[Dict[str, Any], FilteredData]

The transformed data.

Source code in fastestimator/fastestimator/pipeline.py
def transform(self, data: Dict[str, Any], mode: str, epoch: int = 1, ds_id: str = '',
              target_type: str = 'np') -> Union[Dict[str, Any], FilteredData]:
    """Apply all pipeline operations on a given data instance for the specified `mode` and `epoch`.

    Args:
        data: Input data in dictionary format.
        mode: The execution mode in which to run. This can be "train", "eval", "test" or "infer".
        epoch: The epoch index to run. Note that epoch indices are 1-indexed.
        ds_id: The current dataset id.
        target_type: What kind of tensor(s) to create. One of "tf", "torch", or "np".

    Returns:
        The transformed data.
    """
    data = deepcopy(data)
    instance_ops, batch_spec, batch_ops = self._get_op_split(mode=mode, epoch=epoch, ds_id=ds_id)
    state = {'mode': mode}
    op_data = forward_numpyop(instance_ops, data, state)
    if isinstance(op_data, FilteredData):
        return op_data
    data = batch_spec.collate_fn([data])
    op_data = forward_numpyop(batch_ops, data, state, batched='torch')
    if isinstance(op_data, FilteredData):
        return op_data
    return to_tensor(data, target_type=target_type)