_reduce_min
reduce_min
¶
Compute the min value along a given axis
of a tensor
.
This method can be used with Numpy data:
n = np.array([[[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]]])
b = fe.backend.reduce_min(n) # 1
b = fe.backend.reduce_min(n, axis=0) # [[1, 2], [3, 4]]
b = fe.backend.reduce_min(n, axis=1) # [[1, 2], [5, 6]]
b = fe.backend.reduce_min(n, axis=[0,2]) # [1, 3]
This method can be used with TensorFlow tensors:
t = tf.constant([[[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]]])
b = fe.backend.reduce_min(t) # 1
b = fe.backend.reduce_min(t, axis=0) # [[1, 2], [3, 4]]
b = fe.backend.reduce_min(t, axis=1) # [[1, 2], [5, 6]]
b = fe.backend.reduce_min(t, axis=[0,2]) # [1, 3]
This method can be used with PyTorch tensors:
p = torch.tensor([[[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]]])
b = fe.backend.reduce_min(p) # 1
b = fe.backend.reduce_min(p, axis=0) # [[1, 2], [3, 4]]
b = fe.backend.reduce_min(p, axis=1) # [[1, 2], [5, 6]]
b = fe.backend.reduce_min(p, axis=[0,2]) # [1, 3]
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tensor |
Tensor
|
The input value. |
required |
axis |
Union[None, int, Sequence[int]]
|
Which axis or collection of axes to compute the min along. |
None
|
keepdims |
bool
|
Whether to preserve the number of dimensions during the reduction. |
False
|
Returns:
Type | Description |
---|---|
Tensor
|
The min values of |
Raises:
Type | Description |
---|---|
ValueError
|
If |