Skip to content

traceability

Traceability

Bases: Trace

Automatically generate summary reports of the training.

Parameters:

Name Type Description Default
save_path str

Where to save the output files. Note that this will generate a new folder with the given name, into which the report and corresponding graphics assets will be written.

required
extra_objects Any

Any extra objects which are not part of the Estimator, but which you want to capture in the summary report. One example could be an extra pipeline which performs pre-processing.

None

Raises:

Type Description
OSError

If graphviz is not installed.

Source code in fastestimator/fastestimator/trace/io/traceability.py
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
@traceable()
class Traceability(Trace):
    """Automatically generate summary reports of the training.

    Args:
        save_path: Where to save the output files. Note that this will generate a new folder with the given name, into
            which the report and corresponding graphics assets will be written.
        extra_objects: Any extra objects which are not part of the Estimator, but which you want to capture in the
            summary report. One example could be an extra pipeline which performs pre-processing.

    Raises:
        OSError: If graphviz is not installed.
    """
    def __init__(self, save_path: str, extra_objects: Any = None):
        # Verify that graphviz is available on this machine
        try:
            pydot.Dot.create(pydot.Dot())
        except OSError:
            raise OSError(
                "Traceability requires that graphviz be installed. See www.graphviz.org/download for more information.")
        # Verify that the system locale is functioning correctly
        try:
            locale.getlocale()
        except ValueError:
            raise OSError("Your system locale is not configured correctly. On mac this can be resolved by adding \
                'export LC_ALL=en_US.UTF-8' and 'export LANG=en_US.UTF-8' to your ~/.bash_profile")
        super().__init__(inputs="*", mode="!infer")  # Claim wildcard inputs to get this trace sorted last
        # Report assets will get saved into a folder for portability
        path = os.path.normpath(save_path)
        path = os.path.abspath(path)
        root_dir = os.path.dirname(path)
        report = os.path.basename(path) or 'report'
        report = report.split('.')[0]
        self.save_dir = os.path.join(root_dir, report)
        self.resource_dir = os.path.join(self.save_dir, 'resources')
        self.report_name = None  # This will be set later by the experiment name
        os.makedirs(self.save_dir, exist_ok=True)
        os.makedirs(self.resource_dir, exist_ok=True)
        # Other member variables
        self.config_tables = []
        # Extra objects will automatically get included in the report since this Trace is @traceable, so we don't need
        # to do anything with them. Referencing here to stop IDEs from flagging the argument as unused and removing it.
        to_list(extra_objects)
        self.doc = Document()
        self.log_splicer = None

    def on_begin(self, data: Data) -> None:
        exp_name = self.system.summary.name
        if not exp_name:
            raise RuntimeError("Traceability reports require an experiment name to be provided in estimator.fit()")
        # Convert the experiment name to a report name (useful for saving multiple experiments into same directory)
        report_name = "".join('_' if c == ' ' else c for c in exp_name
                              if c.isalnum() or c in (' ', '_')).rstrip().lower()
        report_name = re.sub('_{2,}', '_', report_name)
        self.report_name = report_name or 'report'
        # Send experiment logs into a file
        log_path = os.path.join(self.resource_dir, f"{report_name}.txt")
        if self.system.mode != 'test':
            # See if there's a RestoreWizard
            restore = False
            for trace in self.system.traces:
                if isinstance(trace, RestoreWizard):
                    restore = trace.should_restore()
            if not restore:
                # If not running in test mode, we need to remove any old log file since it would get appended to
                with contextlib.suppress(FileNotFoundError):
                    os.remove(log_path)
        self.log_splicer = LogSplicer(log_path)
        self.log_splicer.__enter__()
        # Get the initialization summary information for the experiment
        self.config_tables = self.system.summary.system_config
        models = self.system.network.models
        n_floats = len(self.config_tables) + len(models)

        self.doc = self._init_document_geometry()
        # Keep tables/figures in their sections
        self.doc.packages.append(Package(name='placeins', options=['section']))
        self.doc.preamble.append(NoEscape(r'\usetikzlibrary{positioning}'))

        # Fix an issue with too many tables for LaTeX to render
        self.doc.preamble.append(NoEscape(r'\maxdeadcycles=' + str(2 * n_floats + 10) + ''))
        self.doc.preamble.append(NoEscape(r'\extrafloats{' + str(n_floats + 10) + '}'))

        # Manipulate booktab tables so that their horizontal lines don't break
        self.doc.preamble.append(NoEscape(r'\aboverulesep=0ex'))
        self.doc.preamble.append(NoEscape(r'\belowrulesep=0ex'))
        self.doc.preamble.append(NoEscape(r'\renewcommand{\arraystretch}{1.2}'))

        self._write_title()
        self._write_toc()

    def on_end(self, data: Data) -> None:
        self._write_body_content()

        # Need to move the tikz dependency after the xcolor package
        self.doc.dumps_packages()
        packages = self.doc.packages
        tikz = Package(name='tikz')
        packages.discard(tikz)
        packages.add(tikz)

        if shutil.which("latexmk") is None and shutil.which("pdflatex") is None:
            # No LaTeX Compiler is available
            self.doc.generate_tex(os.path.join(self.save_dir, self.report_name))
            suffix = '.tex'
        else:
            # Force a double-compile since some compilers will struggle with TOC generation
            self.doc.generate_pdf(os.path.join(self.save_dir, self.report_name), clean_tex=False, clean=False)
            self.doc.generate_pdf(os.path.join(self.save_dir, self.report_name), clean_tex=False)
            suffix = '.pdf'
        print("FastEstimator-Traceability: Report written to {}{}".format(os.path.join(self.save_dir, self.report_name),
                                                                          suffix))
        self.log_splicer.__exit__()

    def _write_title(self) -> None:
        """Write the title content of the file. Override if you want to build on top of base traceability report.
        """
        self.doc.preamble.append(Command('title', self.system.summary.name))
        self.doc.preamble.append(Command('author', f"FastEstimator {fe.__version__}"))
        self.doc.preamble.append(Command('date', NoEscape(r'\today')))
        self.doc.append(NoEscape(r'\maketitle'))

    def _write_toc(self) -> None:
        """Write the table of contents. Override if you want to build on top of base traceability report.
        """
        self.doc.append(NoEscape(r'\tableofcontents'))
        self.doc.append(NoEscape(r'\newpage'))

    def _write_body_content(self) -> None:
        """Write the main content of the file. Override if you want to build on top of base traceability report.
        """
        self._document_training_graphs()
        self.doc.append(NoEscape(r'\newpage'))
        self._document_fe_graph()
        self.doc.append(NoEscape(r'\newpage'))
        self._document_init_params()
        self._document_models()
        self._document_sys_config()
        self.doc.append(NoEscape(r'\newpage'))

    def _document_training_graphs(self) -> None:
        """Add training graphs to the traceability document.
        """
        with self.doc.create(Section("Training Graphs")):
            log_path = os.path.join(self.resource_dir, f'{self.report_name}_logs.png')
            visualize_logs(experiments=[self.system.summary],
                           save_path=log_path,
                           verbose=False,
                           ignore_metrics={'num_device', 'logging_interval'})
            with self.doc.create(Figure(position='h!')) as plot:
                plot.add_image(os.path.relpath(log_path, start=self.save_dir),
                               width=NoEscape(r'1.0\textwidth,height=0.95\textheight,keepaspectratio'))
            for idx, graph in enumerate(self.system.custom_graphs.values()):
                graph_path = os.path.join(self.resource_dir, f'{self.report_name}_custom_graph_{idx}.png')
                visualize_logs(experiments=graph, save_path=graph_path, verbose=False)
                with self.doc.create(Figure(position='h!')) as plot:
                    plot.add_image(os.path.relpath(graph_path, start=self.save_dir),
                                   width=NoEscape(r'1.0\textwidth,height=0.95\textheight,keepaspectratio'))

    def _document_fe_graph(self) -> None:
        """Add FE execution graphs into the traceability document.
        """
        with self.doc.create(Section("FastEstimator Architecture")):
            for mode in self.system.pipeline.data.keys():
                scheduled_items = self.system.pipeline.get_scheduled_items(
                    mode) + self.system.network.get_scheduled_items(mode) + self.system.traces
                signature_epochs = get_signature_epochs(scheduled_items, total_epochs=self.system.epoch_idx, mode=mode)
                epochs_with_data = self.system.pipeline.get_epochs_with_data(total_epochs=self.system.epoch_idx,
                                                                             mode=mode)
                if set(signature_epochs) & epochs_with_data:
                    self.doc.append(NoEscape(r'\FloatBarrier'))
                    with self.doc.create(Subsection(mode.capitalize())):
                        for epoch in signature_epochs:
                            if epoch not in epochs_with_data:
                                continue
                            self.doc.append(NoEscape(r'\FloatBarrier'))
                            with self.doc.create(
                                    Subsubsection(f"Epoch {epoch}",
                                                  label=Label(Marker(name=f"{mode}{epoch}", prefix="ssubsec")))):
                                ds_ids = self.system.pipeline.get_ds_ids(epoch=epoch, mode=mode)
                                for ds_id in ds_ids:
                                    with NonContext() if ds_id == '' else self.doc.create(
                                            Paragraph(f"Dataset {ds_id}",
                                                      label=Label(Marker(name=f"{mode}{epoch}{ds_id}",
                                                                         prefix="para")))):
                                        diagram = self._draw_diagram(mode, epoch, ds_id)
                                        ltx = d2t.dot2tex(diagram.to_string(), figonly=True)
                                        args = Arguments(**{'max width': r'\textwidth, max height=0.9\textheight'})
                                        args.escape = False
                                        with self.doc.create(Center()):
                                            with self.doc.create(AdjustBox(arguments=args)) as box:
                                                box.append(NoEscape(ltx))

    def _document_init_params(self) -> None:
        """Add initialization parameters to the traceability document.
        """
        from fastestimator.estimator import Estimator  # Avoid circular import
        with self.doc.create(Section("Parameters")):
            model_ids = {
                FEID(id(model))
                for model in self.system.network.models if isinstance(model, (tf.keras.Model, torch.nn.Module))
            }
            # Locate the datasets in order to provide extra details about them later in the summary
            datasets = {}
            for mode in ['train', 'eval', 'test']:
                objs = to_list(self.system.pipeline.data.get(mode, None))
                idx = 0
                while idx < len(objs):
                    obj = objs[idx]
                    if obj:
                        feid = FEID(id(obj))
                        if feid not in datasets:
                            datasets[feid] = ({mode}, obj)
                        else:
                            datasets[feid][0].add(mode)
                    if isinstance(obj, Scheduler):
                        objs.extend(obj.get_all_values())
                    idx += 1
            # Parse the config tables
            start = 0
            start = self._loop_tables(start,
                                      classes=(Estimator, BaseNetwork, Pipeline),
                                      name="Base Classes",
                                      model_ids=model_ids,
                                      datasets=datasets)
            start = self._loop_tables(start,
                                      classes=Scheduler,
                                      name="Schedulers",
                                      model_ids=model_ids,
                                      datasets=datasets)
            start = self._loop_tables(start, classes=Trace, name="Traces", model_ids=model_ids, datasets=datasets)
            start = self._loop_tables(start, classes=Op, name="Operators", model_ids=model_ids, datasets=datasets)
            start = self._loop_tables(start, classes=Slicer, name="Slicers", model_ids=model_ids, datasets=datasets)
            start = self._loop_tables(start,
                                      classes=(Dataset, tf.data.Dataset),
                                      name="Datasets",
                                      model_ids=model_ids,
                                      datasets=datasets)
            start = self._loop_tables(start,
                                      classes=(tf.keras.Model, torch.nn.Module),
                                      name="Models",
                                      model_ids=model_ids,
                                      datasets=datasets)
            start = self._loop_tables(start,
                                      classes=types.FunctionType,
                                      name="Functions",
                                      model_ids=model_ids,
                                      datasets=datasets)
            start = self._loop_tables(start,
                                      classes=(np.ndarray, tf.Tensor, tf.Variable, torch.Tensor),
                                      name="Tensors",
                                      model_ids=model_ids,
                                      datasets=datasets)
            self._loop_tables(start, classes=Any, name="Miscellaneous", model_ids=model_ids, datasets=datasets)

    def _loop_tables(self,
                     start: int,
                     classes: Union[type, Tuple[type, ...]],
                     name: str,
                     model_ids: Set[FEID],
                     datasets: Dict[FEID, Tuple[Set[str], Any]]) -> int:
        """Iterate through tables grouping them into subsections.

        Args:
            start: What index to start searching from.
            classes: What classes are acceptable for this subsection.
            name: What to call this subsection.
            model_ids: The ids of any known models.
            datasets: A mapping like {ID: ({modes}, dataset)}. Useful for augmenting the displayed information.

        Returns:
            The new start index after traversing as many spaces as possible along the list of tables.
        """
        stop = start
        while stop < len(self.config_tables):
            if classes == Any or issubclass(self.config_tables[stop].type, classes):
                stop += 1
            else:
                break
        if stop > start:
            self.doc.append(NoEscape(r'\FloatBarrier'))
            with self.doc.create(Subsection(name)):
                self._write_tables(self.config_tables[start:stop], model_ids, datasets)
        return stop

    def _write_tables(self,
                      tables: List[FeSummaryTable],
                      model_ids: Set[FEID],
                      datasets: Dict[FEID, Tuple[Set[str], Any]]) -> None:
        """Insert a LaTeX representation of a list of tables into the current doc.

        Args:
            tables: The tables to write into the doc.
            model_ids: The ids of any known models.
            datasets: A mapping like {ID: ({modes}, dataset)}. Useful for augmenting the displayed information.
        """
        for tbl in tables:
            name_override = None
            toc_ref = None
            extra_rows = None
            if tbl.fe_id in model_ids:
                # Link to a later detailed model description
                name_override = Hyperref(Marker(name=str(tbl.name), prefix="subsec"),
                                         text=NoEscape(r'\textcolor{blue}{') + bold(tbl.name) + NoEscape('}'))
            if tbl.fe_id in datasets:
                modes, dataset = datasets[tbl.fe_id]
                title = ", ".join([s.capitalize() for s in modes])
                name_override = bold(f'{tbl.name} ({title})')
                # Enhance the dataset summary
                if isinstance(dataset, FEDataset):
                    extra_rows = list(dataset.summary().__getstate__().items())
                    for idx, (key, val) in enumerate(extra_rows):
                        key = f"{prettify_metric_name(key)}:"
                        if isinstance(val, dict) and val:
                            if isinstance(list(val.values())[0], (int, float, str, bool, type(None))):
                                val = jsonpickle.dumps(val, unpicklable=False)
                            else:
                                subtable = Tabularx('l|X', width_argument=NoEscape(r'\linewidth'))
                                for k, v in val.items():
                                    if hasattr(v, '__getstate__'):
                                        v = jsonpickle.dumps(v, unpicklable=False)
                                    subtable.add_row((k, v))
                                # To nest TabularX, have to wrap it in brackets
                                subtable = ContainerList(data=[NoEscape("{"), subtable, NoEscape("}")])
                                val = subtable
                        extra_rows[idx] = (key, val)
            tbl.render_table(self.doc, name_override=name_override, toc_ref=toc_ref, extra_rows=extra_rows)

    def _document_models(self) -> None:
        """Add model summaries to the traceability document.
        """
        with self.doc.create(Section("Models")):
            for model in humansorted(self.system.network.models, key=lambda m: m.model_name):
                if not isinstance(model, (tf.keras.Model, torch.nn.Module)):
                    continue
                self.doc.append(NoEscape(r'\FloatBarrier'))
                with self.doc.create(Subsection(f"{model.model_name.capitalize()}", label=model.model_name)):
                    if isinstance(model, tf.keras.Model):
                        # Text Summary
                        summary = []
                        model.summary(line_length=92, print_fn=lambda x: summary.append(x))
                        summary = "\n".join(summary)
                        self.doc.append(Verbatim(summary))
                        with self.doc.create(Center()):
                            self.doc.append(HrefFEID(FEID(id(model)), model.model_name))

                        # Visual Summary
                        # noinspection PyBroadException
                        try:
                            file_path = os.path.join(self.resource_dir,
                                                     "{}_{}.pdf".format(self.report_name, model.model_name))
                            dot = tf.keras.utils.model_to_dot(model, show_shapes=True, expand_nested=True)
                            # LaTeX \maxdim is around 575cm (226 inches), so the image must have max dimension less than
                            # 226 inches. However, the 'size' parameter doesn't account for the whole node height, so
                            # set the limit lower (100 inches) to leave some wiggle room.
                            dot.set('size', '100')
                            dot.write(file_path, format='pdf')
                        except Exception:
                            file_path = None
                            warn(f"Model {model.model_name} could not be visualized by Traceability")
                    elif isinstance(model, torch.nn.Module):
                        if hasattr(model, 'fe_input_spec'):
                            # Text Summary
                            # noinspection PyUnresolvedReferences
                            inputs = model.fe_input_spec.get_dummy_input()
                            with Suppressor():
                                self.doc.append(
                                    Verbatim(
                                        str(
                                            pms(model.module if self.system.num_devices > 1 else model,
                                                input_data=inputs,
                                                col_names=("output_size", "num_params", "trainable"),
                                                col_width=20,
                                                row_settings=["ascii_only"],
                                                verbose=0))))

                            with self.doc.create(Center()):
                                self.doc.append(HrefFEID(FEID(id(model)), model.model_name))
                            # Visual Summary
                            # noinspection PyBroadException
                            try:
                                model.to(inputs.device)
                                graph = draw_graph(
                                    model.module if isinstance(model, torch.nn.parallel.DataParallel) else model,
                                    input_data=inputs,
                                    device=inputs.device,
                                    graph_dir='TB',
                                    expand_nested=True,
                                    depth=7).visual_graph
                                # LaTeX \maxdim is around 575cm (226 inches), so the image must have max dimension less
                                # than 226 inches. However, the 'size' parameter doesn't account for the whole node
                                # height, so set the limit lower (100 inches) to leave some wiggle room.
                                graph.attr(size="100,100")
                                graph.attr(margin='0')
                                file_path = graph.render(filename="{}_{}".format(self.report_name, model.model_name),
                                                         directory=self.resource_dir,
                                                         format='pdf',
                                                         cleanup=True)
                            except Exception:
                                file_path = None
                                warn("Model {} could not be visualized by Traceability".format(model.model_name))
                        else:
                            file_path = None
                            self.doc.append("This model was not used by the Network during training.")
                    else:
                        file_path = None
                        self.doc.append(f"Model format: {type(model)} not recognized.")
                    if file_path:
                        with self.doc.create(Figure(position='ht!')) as fig:
                            fig.append(Label(Marker(name=str(FEID(id(model))), prefix="model")))
                            fig.add_image(os.path.relpath(file_path, start=self.save_dir),
                                          width=NoEscape(r'1.0\textwidth,height=0.95\textheight,keepaspectratio'))
                            fig.add_caption(NoEscape(HrefFEID(FEID(id(model)), model.model_name).dumps()))

    def _document_sys_config(self) -> None:
        """Add a system config summary to the traceability document.
        """
        with self.doc.create(Section("System Configuration")):
            with self.doc.create(Itemize()) as itemize:
                itemize.add_item(escape_latex(f"FastEstimator {fe.__version__}"))
                itemize.add_item(escape_latex(f"Python {platform.python_version()}"))
                itemize.add_item(escape_latex(f"OS: {sys.platform}"))
                cpu = get_cpu_info()
                itemize.add_item(f"CPU Used: {cpu_count()} Threads")
                with self.doc.create(Itemize()) as subitem:
                    subitem.add_item(f"{cpu['brand_raw']} ({cpu['count']} Threads)")
                itemize.add_item(f"GPU(s) Used: {get_num_gpus()}")
                gpus = get_gpu_info()
                if gpus:
                    with self.doc.create(Itemize()) as subitem:
                        for gpu in gpus:
                            subitem.add_item(gpu)
                if fe.fe_deterministic_seed is not None:
                    itemize.add_item(escape_latex(f"Deterministic Seed: {fe.fe_deterministic_seed}"))
            with self.doc.create(LongTable('|lr|', pos=['h!'], booktabs=True)) as tabular:
                tabular.add_row((bold("Module"), bold("Version")))
                tabular.add_hline()
                tabular.end_table_header()
                tabular.add_hline()
                tabular.add_row((MultiColumn(2, align='r', data='Continued on Next Page'), ))
                tabular.add_hline()
                tabular.end_table_footer()
                tabular.end_table_last_footer()
                color = True
                for name, module in humansorted(sys.modules.items(), key=lambda x: x[0]):
                    if "." in name:
                        continue  # Skip sub-packages
                    if name.startswith("_"):
                        continue  # Skip private packages
                    if isinstance(module, Base):
                        continue  # Skip fake packages we mocked
                    if hasattr(module, '__version__'):
                        tabular.add_row((escape_latex(name), escape_latex(str(module.__version__))),
                                        color='black!5' if color else 'white')
                        color = not color
                    elif hasattr(module, 'VERSION'):
                        tabular.add_row((escape_latex(name), escape_latex(str(module.VERSION))),
                                        color='black!5' if color else 'white')
                        color = not color

    def _draw_diagram(self, mode: str, epoch: int, ds_id: str) -> pydot.Dot:
        """Draw a summary diagram of the FastEstimator Ops / Traces.

        Args:
            mode: The execution mode to summarize ('train', 'eval', 'test', or 'infer').
            epoch: The epoch to summarize.
            ds_id: The ds_id to summarize.

        Returns:
            A pydot digraph representing the execution flow.
        """
        ds = self.system.pipeline.data[mode][ds_id]
        if isinstance(ds, Scheduler):
            ds = ds.get_current_value(epoch)
        pipe_ops = get_current_items(self.system.pipeline.ops, run_modes=mode, epoch=epoch, ds_id=ds_id) if isinstance(
            ds, Dataset) else []
        net_ops = get_current_items(self.system.network.ops, run_modes=mode, epoch=epoch, ds_id=ds_id)
        net_slicers = get_current_items(self.system.network.slicers, run_modes=mode, epoch=epoch, ds_id=ds_id)
        net_post = get_current_items(self.system.network.postprocessing, run_modes=mode, epoch=epoch, ds_id=ds_id)
        traces = sort_traces(get_current_items(self.system.traces, run_modes=mode, epoch=epoch, ds_id=ds_id),
                             ds_ids=self.system.pipeline.get_ds_ids(epoch=epoch, mode=mode))
        diagram = pydot.Dot(compound='true')  # Compound lets you draw edges which terminate at sub-graphs
        diagram.set('rankdir', 'TB')
        diagram.set('dpi', 300)
        diagram.set_node_defaults(shape='box')

        # Make the dataset the first of the pipeline ops
        pipe_ops.insert(0, ds)
        label_last_seen = DefaultKeyDict(lambda k: str(id(ds)))  # Where was this key last generated

        batch_size = ""
        if isinstance(ds, Dataset):
            if hasattr(ds, "fe_batch") and ds.fe_batch:
                batch_size = ds.fe_batch
            else:
                batch_size = self.system.pipeline.batch_size
                if isinstance(batch_size, Scheduler):
                    batch_size = batch_size.get_current_value(epoch)
                if isinstance(batch_size, dict):
                    batch_size = batch_size[mode]
        if batch_size is not None:
            batch_size = f" (Batch Size: {batch_size})"
        self._draw_subgraph(diagram, diagram, label_last_seen, f'Pipeline{batch_size}', pipe_ops, ds_id)
        self._draw_subgraph(diagram,
                            diagram,
                            label_last_seen,
                            'Network',
                            net_slicers + net_ops + [_UnslicerWrapper(slicer) for slicer in net_slicers] + net_post,
                            ds_id)
        self._draw_subgraph(diagram, diagram, label_last_seen, 'Traces', traces, ds_id)
        return diagram

    def _draw_subgraph(self,
                       progenitor: pydot.Dot,
                       diagram: Union[pydot.Dot, pydot.Cluster],
                       label_last_seen: DefaultKeyDict[str, str],
                       subgraph_name: str,
                       subgraph_ops: List[Union[Op, Trace, Any]],
                       ds_id: Optional[str]) -> None:
        """Draw a subgraph of ops into an existing `diagram`.

        Args:
            progenitor: The very top level diagram onto which Edges should be written.
            diagram: The diagram into which to add new Nodes.
            label_last_seen: A mapping of {data_dict_key: node_id} indicating the last node which generated the key.
            subgraph_name: The name to be associated with this subgraph.
            subgraph_ops: The ops to be wrapped in this subgraph.
            ds_id: The ds_id to be associated with this subgraph.
        """
        subgraph = pydot.Cluster(style='dashed', graph_name=subgraph_name, color='black')
        subgraph.set('label', subgraph_name)
        subgraph.set('labeljust', 'l')
        for idx, op in enumerate(subgraph_ops):
            node_id = str(id(op))
            self._add_node(progenitor, subgraph, op, label_last_seen, ds_id)
            if isinstance(op, Trace) and idx > 0:
                # Invisibly connect traces in order so that they aren't all just squashed horizontally into the image
                progenitor.add_edge(pydot.Edge(src=str(id(subgraph_ops[idx - 1])), dst=node_id, style='invis'))
        diagram.add_subgraph(subgraph)

    def _add_node(self,
                  progenitor: pydot.Dot,
                  diagram: Union[pydot.Dot, pydot.Cluster],
                  op: Union[Op, Trace, Any],
                  label_last_seen: DefaultKeyDict[str, str],
                  ds_id: Optional[str],
                  edges: bool = True) -> None:
        """Draw a node onto a diagram based on a given op.

        Args:
            progenitor: The very top level diagram onto which Edges should be written.
            diagram: The diagram to be appended to.
            op: The op (or trace) to be visualized.
            label_last_seen: A mapping of {data_dict_key: node_id} indicating the last node which generated the key.
            ds_id: The ds_id under which the node is currently running.
            edges: Whether to write Edges to/from this Node.
        """
        node_id = str(id(op))
        if isinstance(op, (Sometimes, SometimesT)) and op.op:
            wrapper = pydot.Cluster(style='dotted', color='red', graph_name=str(id(op)))
            wrapper.set('label', f'Sometimes ({op.prob}):')
            wrapper.set('labeljust', 'l')
            edge_srcs = defaultdict(lambda: [])
            if op.extra_inputs:
                for inp in op.extra_inputs:
                    if inp == '*':
                        continue
                    edge_srcs[label_last_seen[inp]].append(inp)
            self._add_node(progenitor, wrapper, op.op, label_last_seen, ds_id)
            diagram.add_subgraph(wrapper)
            dst_id = self._get_all_nodes(wrapper)[0].get_name()
            for src, labels in edge_srcs.items():
                progenitor.add_edge(
                    pydot.Edge(src=src, dst=dst_id, lhead=wrapper.get_name(), label=f" {', '.join(labels)} "))
        elif isinstance(op, (OneOf, OneOfT)) and op.ops:
            wrapper = pydot.Cluster(style='dotted', color='darkorchid4', graph_name=str(id(op)))
            wrapper.set('label', 'One Of:')
            wrapper.set('labeljust', 'l')
            self._add_node(progenitor, wrapper, op.ops[0], label_last_seen, ds_id, edges=True)
            for sub_op in op.ops[1:]:
                self._add_node(progenitor, wrapper, sub_op, label_last_seen, ds_id, edges=False)
            diagram.add_subgraph(wrapper)
        elif isinstance(op, (Fuse, FuseT)) and op.ops:
            self._draw_subgraph(progenitor, diagram, label_last_seen, 'Fuse:', op.ops, ds_id)
        elif isinstance(op, (Repeat, RepeatT)) and op.op:
            wrapper = pydot.Cluster(style='dotted', color='darkgreen', graph_name=str(id(op)))
            wrapper.set('label', f'Repeat:')
            wrapper.set('labeljust', 'l')
            wrapper.add_node(
                pydot.Node(node_id,
                           label=f'{op.repeat if isinstance(op.repeat, int) else "?"}',
                           shape='doublecircle',
                           width=0.1))
            # dot2tex doesn't seem to handle edge color conversion correctly, so have to set hex color
            progenitor.add_edge(pydot.Edge(src=node_id + ":ne", dst=node_id + ":w", color='#006300'))
            self._add_node(progenitor, wrapper, op.op, label_last_seen, ds_id)
            # Add repeat edges
            edge_srcs = defaultdict(lambda: [])
            for out in op.outputs:
                if out in op.inputs and out not in op.repeat_inputs:
                    edge_srcs[label_last_seen[out]].append(out)
            for inp in op.repeat_inputs:
                edge_srcs[label_last_seen[inp]].append(inp)
            for src, labels in edge_srcs.items():
                progenitor.add_edge(pydot.Edge(src=src, dst=node_id, constraint=False, label=f" {', '.join(labels)} "))
            diagram.add_subgraph(wrapper)
        else:
            if isinstance(op, ModelOp):
                label = f"{op.__class__.__name__} ({FEID(id(op))}): {op.model.model_name}"
                model_ref = Hyperref(Marker(name=str(op.model.model_name), prefix='subsec'),
                                     text=NoEscape(r'\textcolor{blue}{') + bold(op.model.model_name) +
                                     NoEscape('}')).dumps()
                texlbl = f"{HrefFEID(FEID(id(op)), name=op.__class__.__name__).dumps()}: {model_ref}"
            elif isinstance(op, Batch):
                label = f"{op.__class__.__name__} ({FEID(id(op))})"
                texlbl = HrefFEID(FEID(id(op)), name=op.__class__.__name__, color='purple').dumps()
                if op.batch_size is not None:
                    diagram.set_label(f"Pipeline (Batch Size: {op.batch_size})")
                label_last_seen.factory = functools.partial(self._delayed_edge,
                                                            progenitor=progenitor,
                                                            old_source=label_last_seen.factory(''),
                                                            new_source=str(id(op)))
            elif isinstance(op, Slicer):
                label = f"{op.__class__.__name__} ({FEID(id(op))})"
                texlbl = HrefFEID(FEID(id(op)), name=op.__class__.__name__, color='purple').dumps()
                if op.minibatch_size:
                    diagram.set_label(f"Network (Slices Per Step: {op.minibatch_size})")
            elif isinstance(op, _UnslicerWrapper):
                # The corresponding Slicer is already in the graph earlier
                label = None
                texlbl = None
            else:
                label = f"{op.__class__.__name__} ({FEID(id(op))})"
                texlbl = HrefFEID(FEID(id(op)), name=op.__class__.__name__).dumps()
            if label is not None:
                diagram.add_node(pydot.Node(node_id, label=label, texlbl=texlbl))
            if isinstance(op, (Op, Trace, Slicer, _UnslicerWrapper)) and edges:
                # Need the instance check since subgraph_ops might contain a tf dataset or torch data loader
                self._add_edge(progenitor, op, label_last_seen, ds_id)

    @staticmethod
    def _delayed_edge(key: str, progenitor: pydot.Dot, old_source: str, new_source: str) -> str:
        """Draw a specific edge between two nodes, modifying the old label if applicable.

        Args:
            key: The key associated with the edge.
            progenitor: The parent cluster.
            old_source: The edge source.
            new_source: The edge sync.

        Returns:
            The `new_source`.
        """
        edge = progenitor.get_edge(old_source, new_source)
        if edge:
            edge = edge[0]
            label = f"{edge.get_label()}, {key}"
            edge.set_label(label)
        else:
            progenitor.add_edge(pydot.Edge(src=old_source, dst=new_source, label=f" {key}"))
        return new_source

    def _add_edge(self,
                  progenitor: pydot.Dot,
                  op: Union[Trace, Op, Slicer, _UnslicerWrapper],
                  label_last_seen: Dict[str, str],
                  ds_id: Optional[str]):
        """Draw edges into a given Node.

        Args:
            progenitor: The very top level diagram onto which Edges should be written.
            op: The op (or trace) to be visualized.
            label_last_seen: A mapping of {data_dict_key: node_id} indicating the last node which generated the key.
            ds_id: The ds_id under which the node is currently running.
        """
        node_id = str(id(op.slicer)) if isinstance(op, _UnslicerWrapper) else str(id(op))
        edge_srcs = defaultdict(lambda: [])
        global_ds_ids = {key for vals in self.system.pipeline.data.values() for key in vals.keys() if key is not None}
        for inp in label_last_seen.keys() if isinstance(op, Batch) else op.slice_inputs if isinstance(
                op, Slicer) else op.slicer.unslice_inputs if isinstance(op, _UnslicerWrapper) else op.inputs:
            if inp == '*':
                continue
            _, candidate_id, *_ = f"{inp}|".split('|')
            if candidate_id in global_ds_ids and candidate_id != ds_id:
                continue  # Skip inputs which will be provided in other ds_id plots
            edge_srcs[label_last_seen[inp]].append(inp)
        for src, labels in edge_srcs.items():
            progenitor.add_edge(pydot.Edge(src=src, dst=node_id, label=f" {', '.join(labels)} "))
        outputs = op.get_outputs(ds_ids=ds_id) if isinstance(op, Trace) else op.slice_inputs if isinstance(
            op, Slicer) else op.slicer.unslice_inputs if isinstance(op, _UnslicerWrapper) else op.outputs
        for out in label_last_seen.keys() if isinstance(op, Batch) else outputs:
            label_last_seen[out] = node_id

    @staticmethod
    def _get_all_nodes(diagram: Union[pydot.Dot, pydot.Cluster]) -> List[pydot.Node]:
        """Recursively search through a `diagram` looking for Nodes.

        Args:
            diagram: The diagram to be inspected.

        Returns:
            All of the Nodes available within this diagram and its child diagrams.
        """
        nodes = diagram.get_nodes()
        for subgraph in diagram.get_subgraphs():
            nodes.extend(Traceability._get_all_nodes(subgraph))
        return nodes

    @staticmethod
    def _init_document_geometry() -> Document:
        """Init geometry setting of the document.

        Return:
            Initialized Document object.
        """
        return Document(geometry_options=['lmargin=2cm', 'rmargin=2cm', 'bmargin=2cm'])