_random_normal_like
random_normal_like
¶
Generate noise shaped like tensor
from a random normal distribution with a given mean
and std
.
This method can be used with Numpy data:
n = np.array([[0,1],[2,3]])
b = fe.backend.random_normal_like(n) # [[-0.6, 0.2], [1.9, -0.02]]
b = fe.backend.random_normal_like(n, mean=5.0) # [[3.7, 5.7], [5.6, 3.6]]
This method can be used with TensorFlow tensors:
t = tf.constant([[0,1],[2,3]])
b = fe.backend.random_normal_like(t) # [[-0.6, 0.2], [1.9, -0.02]]
b = fe.backend.random_normal_like(t, mean=5.0) # [[3.7, 5.7], [5.6, 3.6]]
This method can be used with PyTorch tensors:
p = torch.tensor([[0,1],[2,3]])
b = fe.backend.random_normal_like(p) # [[-0.6, 0.2], [1.9, -0.02]]
b = fe.backend.random_normal_like(P, mean=5.0) # [[3.7, 5.7], [5.6, 3.6]]
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tensor |
Tensor
|
The tensor whose shape will be copied. |
required |
mean |
float
|
The mean of the normal distribution to be sampled. |
0.0
|
std |
float
|
The standard deviation of the normal distribution to be sampled. |
1.0
|
dtype |
Union[None, str]
|
The data type to be used when generating the resulting tensor. This should be one of the floating point types. |
'float32'
|
Returns:
Type | Description |
---|---|
Tensor
|
A tensor of random normal noise with the same shape as |
Raises:
Type | Description |
---|---|
ValueError
|
If |