saliency
SaliencyNet
¶
A class to generate saliency masks from a given model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
Model
|
The model, compiled with fe.build, which is to be inspected. |
required |
model_inputs |
Union[str, Sequence[str]]
|
The key(s) corresponding to the model inputs within the data dictionary. |
required |
model_outputs |
Union[str, Sequence[str]]
|
The key(s) corresponding to the model outputs which are written into the data dictionary. |
required |
outputs |
Union[str, List[str]]
|
The keys(s) under which to write the generated saliency images. |
'saliency'
|
Source code in fastestimator/fastestimator/xai/saliency.py
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
|
get_integrated_masks
¶
Generates integrated greyscale saliency mask(s) from a given batch
of data.
See https://arxiv.org/abs/1703.01365 for background on the IntegratedGradient method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch |
Dict[str, Any]
|
An input batch of data. |
required |
nsamples |
int
|
Number of samples to average across to get the integrated gradient. |
25
|
Returns:
Type | Description |
---|---|
Dict[str, Union[Tensor, ndarray]]
|
Greyscale saliency masks smoothed via the IntegratedGradient method. |
Source code in fastestimator/fastestimator/xai/saliency.py
get_masks
¶
Generates greyscale saliency mask(s) from a given batch
of data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch |
Dict[str, Any]
|
A batch of input data to be fed to the model. |
required |
Returns:
Type | Description |
---|---|
Dict[str, Union[Tensor, ndarray]]
|
The model's classification decisions and greyscale saliency mask(s) for the given |
Source code in fastestimator/fastestimator/xai/saliency.py
get_smoothed_masks
¶
Generates smoothed greyscale saliency mask(s) from a given batch
of data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch |
Dict[str, Any]
|
An input batch of data. |
required |
stdev_spread |
float
|
Amount of noise to add to the input, as fraction of the total spread (x_max - x_min). |
0.15
|
nsamples |
int
|
Number of samples to average across to get the smooth gradient. |
25
|
nintegration |
Optional[int]
|
Number of samples to compute when integrating (None to disable). |
None
|
magnitude |
bool
|
If true, computes the sum of squares of gradients instead of just the sum. |
True
|
Returns:
Type | Description |
---|---|
Dict[str, Union[Tensor, ndarray]]
|
Greyscale saliency mask(s) smoothed via the SmoothGrad method. |