Load and return the Shakespeare dataset.
Shakespeare dataset is a collection of texts written by Shakespeare.
Sourced from https://storage.googleapis.com/download.tensorflow.org/data/shakespeare.txt
Parameters:
Name |
Type |
Description |
Default |
root_dir |
Optional[str]
|
The path to store the downloaded data. When path is not provided, the data will be saved into
fastestimator_data under the user's home directory.
|
None
|
seq_length |
int
|
|
100
|
Returns:
Type |
Description |
Tuple[NumpyDataset, List[str]]
|
|
Source code in fastestimator/fastestimator/dataset/data/shakespeare.py
| def load_data(root_dir: Optional[str] = None, seq_length: int = 100) -> Tuple[NumpyDataset, List[str]]:
"""Load and return the Shakespeare dataset.
Shakespeare dataset is a collection of texts written by Shakespeare.
Sourced from https://storage.googleapis.com/download.tensorflow.org/data/shakespeare.txt
Args:
root_dir: The path to store the downloaded data. When `path` is not provided, the data will be saved into
`fastestimator_data` under the user's home directory.
seq_length: Length of data sequence.
Returns:
(train_data, vocab)
"""
home = str(Path.home())
if root_dir is None:
root_dir = os.path.join(home, 'fastestimator_data', 'Shakespeare')
else:
root_dir = os.path.join(os.path.abspath(root_dir), 'Shakespeare')
os.makedirs(root_dir, exist_ok=True)
file_path = os.path.join(root_dir, 'shakespeare.txt')
download_link = 'https://storage.googleapis.com/download.tensorflow.org/data/shakespeare.txt'
if not os.path.exists(file_path):
# Download
print("Downloading data: {}".format(file_path))
wget.download(download_link, file_path, bar=bar_custom)
with open(file_path, 'rb') as f:
text_data = f.read().decode(encoding='utf-8')
# Build dictionary from training data
vocab = sorted(set(text_data))
# Creating a mapping from unique characters to indices
char2idx = {u: i for i, u in enumerate(vocab)}
text_data = [char2idx[c] for c in text_data] + [0] * (seq_length - len(text_data) % seq_length)
text_data = np.array(text_data).reshape(-1, seq_length)
train_data = NumpyDataset(data={"x": text_data})
return train_data, vocab
|