lr_schedule
ARC
¶
A run-of-the-mill learning rate scheduler.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
frequency |
int
|
invoke frequency in terms of number of epochs. |
3
|
Source code in fastestimator/fastestimator/schedule/lr_schedule.py
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
|
cosine_decay
¶
Learning rate cosine decay function (using half of cosine curve).
This method is useful for scheduling learning rates which oscillate over time:
s = fe.schedule.LRScheduler(model=model, lr_fn=lambda step: cosine_decay(step, cycle_length=3750, init_lr=1e-3))
fe.Estimator(..., traces=[s])
For more information, check out SGDR: https://arxiv.org/pdf/1608.03983.pdf.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
time |
int
|
The current step or epoch during training starting from 1. |
required |
cycle_length |
int
|
The decay cycle length. |
required |
init_lr |
float
|
Initial learning rate to decay from. |
required |
min_lr |
float
|
Minimum learning rate. |
1e-06
|
start |
int
|
The step or epoch to start the decay schedule. |
1
|
cycle_multiplier |
int
|
The factor by which next cycle length will be multiplied. |
1
|
warmup |
bool
|
Whether to do a linear warmup from 0 up until `start'. |
False
|
Returns:
Name | Type | Description |
---|---|---|
lr |
learning rate given current step or epoch. |