_random_uniform_like
random_uniform_like
¶
Generate noise shaped like tensor
from a random normal distribution with a given mean
and std
.
This method can be used with Numpy data:
n = np.array([[0,1],[2,3]])
b = fe.backend.random_uniform_like(n) # [[0.62, 0.49], [0.88, 0.37]]
b = fe.backend.random_uniform_like(n, minval=-5.0, maxval=-3) # [[-3.8, -4.4], [-4.8, -4.9]]
This method can be used with TensorFlow tensors:
t = tf.constant([[0,1],[2,3]])
b = fe.backend.random_uniform_like(t) # [[0.62, 0.49], [0.88, 0.37]]
b = fe.backend.random_uniform_like(t, minval=-5.0, maxval=-3) # [[-3.8, -4.4], [-4.8, -4.9]]
This method can be used with PyTorch tensors:
p = torch.tensor([[0,1],[2,3]])
b = fe.backend.random_uniform_like(p) # [[0.62, 0.49], [0.88, 0.37]]
b = fe.backend.random_uniform_like(P, minval=-5.0, maxval=-3) # [[-3.8, -4.4], [-4.8, -4.9]]
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tensor |
Tensor
|
The tensor whose shape will be copied. |
required |
minval |
float
|
The minimum bound of the uniform distribution. |
0.0
|
maxval |
float
|
The maximum bound of the uniform distribution. |
1.0
|
dtype |
Union[None, str]
|
The data type to be used when generating the resulting tensor. This should be one of the floating point types. |
'float32'
|
Returns:
Type | Description |
---|---|
Tensor
|
A tensor of random uniform noise with the same shape as |
Raises:
Type | Description |
---|---|
ValueError
|
If |