_permute
permute
¶
Perform the specified permutation
on the axes of a given tensor
.
This method can be used with Numpy data:
n = np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]], [[8, 9], [10, 11]]])
b = fe.backend.permute(n, [2, 0, 1]) # [[[0, 2], [4, 6], [8, 10]], [[1, 3], [5, 7], [9, 11]]]
b = fe.backend.permute(n, [0, 2, 1]) # [[[0, 2], [1, 3]], [[4, 6], [5, 7]], [[8, 10], [9, 11]]]
This method can be used with TensorFlow tensors:
t = tf.constant([[[0, 1], [2, 3]], [[4, 5], [6, 7]], [[8, 9], [10, 11]]])
b = fe.backend.permute(t, [2, 0, 1]) # [[[0, 2], [4, 6], [8, 10]], [[1, 3], [5, 7], [9, 11]]]
b = fe.backend.permute(t, [0, 2, 1]) # [[[0, 2], [1, 3]], [[4, 6], [5, 7]], [[8, 10], [9, 11]]]
This method can be used with PyTorch tensors:
p = torch.tensor([[[0, 1], [2, 3]], [[4, 5], [6, 7]], [[8, 9], [10, 11]]])
b = fe.backend.permute(p, [2, 0, 1]) # [[[0, 2], [4, 6], [8, 10]], [[1, 3], [5, 7], [9, 11]]]
b = fe.backend.permute(P, [0, 2, 1]) # [[[0, 2], [1, 3]], [[4, 6], [5, 7]], [[8, 10], [9, 11]]]
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tensor |
Tensor
|
The tensor to permute. |
required |
permutation |
List[int]
|
The new axis order to be used. Should be a list containing all integers in range [0, tensor.ndim). |
required |
Returns:
Type | Description |
---|---|
Tensor
|
The |
Raises:
Type | Description |
---|---|
ValueError
|
If |