def load_data(root_dir: Optional[str] = None) -> Tuple[CSVDataset, CSVDataset]:
"""Load and return the Food-101 dataset.
Food-101 dataset is a collection of images from 101 food categories.
Sourced from http://data.vision.ee.ethz.ch/cvl/food-101.tar.gz
Args:
root_dir: The path to store the downloaded data. When `path` is not provided, the data will be saved into
`fastestimator_data` under the user's home directory.
Returns:
(train_data, test_data)
"""
home = str(Path.home())
if root_dir is None:
root_dir = os.path.join(home, 'fastestimator_data', 'Food_101')
else:
root_dir = os.path.join(os.path.abspath(root_dir), 'Food_101')
os.makedirs(root_dir, exist_ok=True)
image_compressed_path = os.path.join(root_dir, 'food-101.tar.gz')
image_extracted_path = os.path.join(root_dir, 'food-101')
train_csv_path = os.path.join(root_dir, 'train.csv')
test_csv_path = os.path.join(root_dir, 'test.csv')
if not os.path.exists(image_extracted_path):
# download
if not os.path.exists(image_compressed_path):
print("Downloading data to {}".format(root_dir))
wget.download('http://data.vision.ee.ethz.ch/cvl/food-101.tar.gz', root_dir, bar=bar_custom)
# extract
print("\nExtracting files ...")
with tarfile.open(image_compressed_path) as img_tar:
img_tar.extractall(root_dir)
labels = open(os.path.join(root_dir, "food-101/meta/classes.txt"), "r").read().split()
label_dict = {labels[i]: i for i in range(len(labels))}
if not os.path.exists(train_csv_path):
train_images = open(os.path.join(root_dir, "food-101/meta/train.txt"), "r").read().split()
random.shuffle(train_images)
_create_csv(train_images, label_dict, train_csv_path)
if not os.path.exists(test_csv_path):
test_images = open(os.path.join(root_dir, "food-101/meta/test.txt"), "r").read().split()
random.shuffle(test_images)
_create_csv(test_images, label_dict, test_csv_path)
return CSVDataset(train_csv_path), CSVDataset(test_csv_path)