op_dataset
OpDataset
¶
Bases: Dataset
A wrapper for datasets which allows operators to be applied to them in a pipeline.
This class should not be directly instantiated by the end user. The fe.Pipeline will automatically wrap datasets within an Op dataset as needed.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
Dataset
|
The base dataset to wrap. |
required |
ops |
List[NumpyOp]
|
A list of ops to be applied after the base |
required |
mode |
str
|
What mode the system is currently running in ('train', 'eval', 'test', or 'infer'). |
required |
output_keys |
Optional[Set[str]]
|
What keys can be produced from pipeline. If None or empty, all keys will be considered. |
None
|
deep_remainder |
bool
|
Whether data which is not modified by Ops should be deep copied or not. This argument is used to help with RAM management, but end users can almost certainly ignore it. |
True
|
Source code in fastestimator/fastestimator/dataset/op_dataset.py
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
|
handle_warning
classmethod
¶
A function which prints warning messages about unused keys if such messages haven't already been printed.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
candidates |
Set[str]
|
Unused keys which you might need to print a warning message about. |
required |