Skip to content

Support Matrix

FastEstimator Python TensorFlow PyTorch CUDA Installation Instruction
Nightly 3.8-3.10 2.11.1 2.0.1 11.8 master branch
1.6 (recent stable) 3.8-3.10 2.11.1 2.0.1 11.8 r1.6 branch
1.5 3.7-3.9 2.9.1 1.10.2 11.0 r1.5 branch
1.4 3.6-3.8 2.4.1 1.7.1 11.0 r1.4 branch
1.3 3.6-3.8 2.4.1 1.7.1 11.0 r1.3 branch
1.2 3.6-3.8 2.4.1 1.7.1 11.0 r1.2 branch
1.1 3.6-3.8 2.3.0 1.6.0 10.1 r1.1 branch

1. Install Dependencies

  • Install TensorFlow

  • Install PyTorch

    • CPU:

      bash pip install torch==2.0.1+cpu torchvision==0.15.2+cpu torchaudio==2.0.2+cpu -f https://download.pytorch.org/whl/cpu/torch_stable.html

  • GPU:

    pip install torch==2.0.1+cu118 torchvision==0.15.2+cu118 torchaudio==2.0.2+cu118 -f https://download.pytorch.org/whl/cu118/torch_stable.html
    
  • Extra Dependencies:

  • Windows:

    • Install Build Tools for Visual Studio 2019 here.

    • Install latest Visual C++ redistributable here and choose x86 for 32 bit OS, x64 for 64 bit OS.

  • Linux:

    apt-get install libglib2.0-0 libsm6 libxrender1 libxext6
    
  • Mac:

2. Install FastEstimator

  • Stable:

    pip install fastestimator
    
  • Nightly (Linux/Mac):

    pip install fastestimator-nightly
    

Docker Hub

Docker containers create isolated virtual environments that share resources with a host machine. Docker provides an easy way to set up a FastEstimator environment. You can simply pull our image from Docker Hub and get started:

  • Stable:
  • GPU:

    docker pull fastestimator/fastestimator:latest-gpu
    
  • CPU:

    docker pull fastestimator/fastestimator:latest-cpu
    
  • Nighly:

  • GPU:

    docker pull fastestimator/fastestimator:nightly-gpu
    
  • CPU:

    docker pull fastestimator/fastestimator:nightly-cpu