def load_data(root_dir: Optional[str] = None,
seq_length: int = 64) -> Tuple[NumpyDataset, NumpyDataset, NumpyDataset, List[str]]:
"""Load and return the Penn TreeBank dataset.
Args:
root_dir: The path to store the downloaded data. When `path` is not provided, the data will be saved into
`fastestimator_data` under the user's home directory.
seq_length: Length of data sequence.
Returns:
(train_data, eval_data, test_data, vocab)
"""
home = str(Path.home())
if root_dir is None:
root_dir = os.path.join(home, 'fastestimator_data', 'PennTreeBank')
else:
root_dir = os.path.join(os.path.abspath(root_dir), 'PennTreeBank')
os.makedirs(root_dir, exist_ok=True)
train_data_path = os.path.join(root_dir, 'ptb.train.txt')
eval_data_path = os.path.join(root_dir, 'ptb.valid.txt')
test_data_path = os.path.join(root_dir, 'ptb.test.txt')
files = [(train_data_path, 'https://raw.githubusercontent.com/wojzaremba/lstm/master/data/ptb.train.txt'),
(eval_data_path, 'https://raw.githubusercontent.com/wojzaremba/lstm/master/data/ptb.valid.txt'),
(test_data_path, 'https://raw.githubusercontent.com/wojzaremba/lstm/master/data/ptb.test.txt')]
texts = []
for data_path, download_link in files:
if not os.path.exists(data_path):
# Download
print("Downloading data: {}".format(data_path))
wget.download(download_link, data_path, bar=bar_custom)
text = []
with open(data_path, 'r') as f:
for line in f:
text.extend(line.split() + ['<eos>'])
texts.append(text)
# Build dictionary from training data
vocab = sorted(set(texts[0]))
word2idx = {u: i for i, u in enumerate(vocab)}
#convert word to index and split the sequences and discard the last incomplete sequence
data = [[word2idx[word] for word in text[:-(len(text) % seq_length)]] for text in texts]
x_train, x_eval, x_test = [np.array(d).reshape(-1, seq_length) for d in data]
train_data = NumpyDataset(data={"x": x_train})
eval_data = NumpyDataset(data={"x": x_eval})
test_data = NumpyDataset(data={"x": x_test})
return train_data, eval_data, test_data, vocab