def load_data(root_dir: str = None, image_key: str = "x", label_key: str = "y") -> Tuple[NumpyDataset, NumpyDataset]:
"""Load and return the ciFAIR10 dataset.
This is the cifar10 dataset but with test set duplicates removed and replaced. See
https://arxiv.org/pdf/1902.00423.pdf or https://cvjena.github.io/cifair/ for details. Cite the paper if you use the
dataset.
Args:
root_dir: The path to store the downloaded data. When `path` is not provided, the data will be saved into
`fastestimator_data` under the user's home directory.
image_key: The key for image.
label_key: The key for label.
Returns:
(train_data, test_data)
"""
home = str(Path.home())
if root_dir is None:
root_dir = os.path.join(home, 'fastestimator_data', 'ciFAIR10')
else:
root_dir = os.path.join(os.path.abspath(root_dir), 'ciFAIR10')
os.makedirs(root_dir, exist_ok=True)
image_compressed_path = os.path.join(root_dir, 'ciFAIR10.zip')
image_extracted_path = os.path.join(root_dir, 'ciFAIR-10')
if not os.path.exists(image_extracted_path):
print("Downloading data to {}".format(root_dir))
download_file_from_google_drive('1dqTgqMVvgx_FZNAC7TqzoA0hYX1ttOUq', image_compressed_path)
print("Extracting data to {}".format(root_dir))
shutil.unpack_archive(image_compressed_path, root_dir)
num_train_samples = 50000
x_train = np.empty((num_train_samples, 3, 32, 32), dtype='uint8')
y_train = np.empty((num_train_samples, ), dtype='uint8')
for i in range(1, 6):
fpath = os.path.join(image_extracted_path, f'data_batch_{i}')
(x_train[(i - 1) * 10000:i * 10000, :, :, :], y_train[(i - 1) * 10000:i * 10000]) = _load_batch(fpath)
fpath = os.path.join(image_extracted_path, 'test_batch')
x_test, y_test = _load_batch(fpath)
y_train = np.array(y_train, dtype=np.uint8)
y_test = np.array(y_test, dtype=np.uint8)
x_train = x_train.transpose((0, 2, 3, 1))
x_test = x_test.transpose((0, 2, 3, 1))
x_test = x_test.astype(x_train.dtype)
train_data = NumpyDataset({image_key: x_train, label_key: y_train})
test_data = NumpyDataset({image_key: x_test, label_key: y_test})
return train_data, test_data