Skip to content

cifair10

load_data

Load and return the ciFAIR10 dataset.

This is the cifar10 dataset but with test set duplicates removed and replaced. See https://arxiv.org/pdf/1902.00423.pdf or https://cvjena.github.io/cifair/ for details. Cite the paper if you use the dataset.

Parameters:

Name Type Description Default
root_dir str

The path to store the downloaded data. When path is not provided, the data will be saved into fastestimator_data under the user's home directory.

None
image_key str

The key for image.

'x'
label_key str

The key for label.

'y'

Returns:

Type Description
Tuple[NumpyDataset, NumpyDataset]

(train_data, test_data)

Source code in fastestimator/fastestimator/dataset/data/cifair10.py
def load_data(root_dir: str = None, image_key: str = "x", label_key: str = "y") -> Tuple[NumpyDataset, NumpyDataset]:
    """Load and return the ciFAIR10 dataset.

    This is the cifar10 dataset but with test set duplicates removed and replaced. See
    https://arxiv.org/pdf/1902.00423.pdf or https://cvjena.github.io/cifair/ for details. Cite the paper if you use the
    dataset.

    Args:
        root_dir: The path to store the downloaded data. When `path` is not provided, the data will be saved into
            `fastestimator_data` under the user's home directory.
        image_key: The key for image.
        label_key: The key for label.

    Returns:
        (train_data, test_data)
    """
    home = str(Path.home())

    if root_dir is None:
        root_dir = os.path.join(home, 'fastestimator_data', 'ciFAIR10')
    else:
        root_dir = os.path.join(os.path.abspath(root_dir), 'ciFAIR10')
    os.makedirs(root_dir, exist_ok=True)

    image_compressed_path = os.path.join(root_dir, 'ciFAIR10.zip')
    image_extracted_path = os.path.join(root_dir, 'ciFAIR-10')

    if not os.path.exists(image_extracted_path):
        print("Downloading data to {}".format(root_dir))
        download_file_from_google_drive('1dqTgqMVvgx_FZNAC7TqzoA0hYX1ttOUq', image_compressed_path)

        print("Extracting data to {}".format(root_dir))
        shutil.unpack_archive(image_compressed_path, root_dir)

    num_train_samples = 50000

    x_train = np.empty((num_train_samples, 3, 32, 32), dtype='uint8')
    y_train = np.empty((num_train_samples, ), dtype='uint8')

    for i in range(1, 6):
        fpath = os.path.join(image_extracted_path, f'data_batch_{i}')
        (x_train[(i - 1) * 10000:i * 10000, :, :, :], y_train[(i - 1) * 10000:i * 10000]) = _load_batch(fpath)

    fpath = os.path.join(image_extracted_path, 'test_batch')
    x_test, y_test = _load_batch(fpath)

    y_train = np.array(y_train, dtype=np.uint8)
    y_test = np.array(y_test, dtype=np.uint8)

    x_train = x_train.transpose((0, 2, 3, 1))
    x_test = x_test.transpose((0, 2, 3, 1))

    x_test = x_test.astype(x_train.dtype)

    train_data = NumpyDataset({image_key: x_train, label_key: y_train})
    test_data = NumpyDataset({image_key: x_test, label_key: y_test})
    return train_data, test_data