def load_data(root_dir: Optional[str] = None) -> Tuple[SiameseDirDataset, SiameseDirDataset]:
"""Load and return the Omniglot dataset.
Args:
root_dir: The path to store the downloaded data. When `path` is not provided, the data will be saved into
`fastestimator_data` under the user's home directory.
Returns:
(train_data, eval_data)
"""
if root_dir is None:
root_dir = os.path.join(str(Path.home()), 'fastestimator_data', 'Omniglot')
else:
root_dir = os.path.join(os.path.abspath(root_dir), 'Omniglot')
os.makedirs(root_dir, exist_ok=True)
train_path = os.path.join(root_dir, 'images_background')
eval_path = os.path.join(root_dir, 'images_evaluation')
train_zip = os.path.join(root_dir, 'images_background.zip')
eval_zip = os.path.join(root_dir, 'images_evaluation.zip')
files = [(train_path, train_zip, 'https://github.com/brendenlake/omniglot/raw/master/python/images_background.zip'),
(eval_path, eval_zip, 'https://github.com/brendenlake/omniglot/raw/master/python/images_evaluation.zip')]
for data_path, data_zip, download_link in files:
if not os.path.exists(data_path):
# Download
if not os.path.exists(data_zip):
print("Downloading data: {}".format(data_zip))
wget.download(download_link, data_zip, bar=bar_custom)
# Extract
print("Extracting data: {}".format(data_path))
with zipfile.ZipFile(data_zip, 'r') as zip_file:
zip_file.extractall(root_dir)
return SiameseDirDataset(train_path), SiameseDirDataset(eval_path)