Bases: Layer
A layer for performing instance normalization.
This class is intentionally not @traceable (models and layers are handled by a different process).
This layer assumes that you are using the a tensor shaped like (Batch, Height, Width, Channels). See
https://arxiv.org/abs/1607.08022 for details about this layer. The implementation here is borrowed from
https://github.com/tensorflow/examples/blob/master/tensorflow_examples/models/pix2pix/pix2pix.py.
n = tfp.distributions.Normal(loc=10, scale=2)
x = n.sample(sample_shape=(1, 100, 100, 1)) # mean ~= 10, stddev ~= 2
m = fe.layers.tensorflow.InstanceNormalization()
y = m(x) # mean ~= 0, stddev ~= 0
Parameters:
Name |
Type |
Description |
Default |
epsilon |
float
|
A numerical stability constant added to the variance.
|
1e-05
|
Source code in fastestimator/fastestimator/layers/tensorflow/instance_norm.py
| class InstanceNormalization(layers.Layer):
"""A layer for performing instance normalization.
This class is intentionally not @traceable (models and layers are handled by a different process).
This layer assumes that you are using the a tensor shaped like (Batch, Height, Width, Channels). See
https://arxiv.org/abs/1607.08022 for details about this layer. The implementation here is borrowed from
https://github.com/tensorflow/examples/blob/master/tensorflow_examples/models/pix2pix/pix2pix.py.
```python
n = tfp.distributions.Normal(loc=10, scale=2)
x = n.sample(sample_shape=(1, 100, 100, 1)) # mean ~= 10, stddev ~= 2
m = fe.layers.tensorflow.InstanceNormalization()
y = m(x) # mean ~= 0, stddev ~= 0
```
Args:
epsilon: A numerical stability constant added to the variance.
"""
def __init__(self, epsilon: float = 1e-5) -> None:
super().__init__()
self.epsilon = epsilon
self.scale = None
self.offset = None
def get_config(self) -> Dict[str, Any]:
return {'epsilon': self.epsilon}
def build(self, input_shape: Tuple[int, int, int, int]) -> None:
self.scale = self.add_weight(name='scale',
shape=input_shape[-1:],
initializer=tf.random_normal_initializer(0., 0.02),
trainable=True)
self.offset = self.add_weight(name='offset', shape=input_shape[-1:], initializer='zeros', trainable=True)
def call(self, x: tf.Tensor) -> tf.Tensor:
mean, variance = tf.nn.moments(x, axes=[1, 2], keepdims=True)
inv = tf.math.rsqrt(variance + self.epsilon)
normalized = (x - mean) * inv
return self.scale * normalized + self.offset
|