Skip to content

random_sun_flare

RandomSunFlare

Bases: ImageOnlyAlbumentation

Add a sun flare to the image.

Parameters:

Name Type Description Default
inputs Union[str, Iterable[str]]

Key(s) of images to be normalized.

required
outputs Union[str, Iterable[str]]

Key(s) into which to write the modified images.

required
mode Union[None, str, Iterable[str]]

What mode(s) to execute this Op in. For example, "train", "eval", "test", or "infer". To execute regardless of mode, pass None. To execute in all modes except for a particular one, you can pass an argument like "!infer" or "!train".

None
ds_id Union[None, str, Iterable[str]]

What dataset id(s) to execute this Op in. To execute regardless of ds_id, pass None. To execute in all ds_ids except for a particular one, you can pass an argument like "!ds1".

None
flare_roi Tuple[float, float, float, float]

region of the image where flare will appear (x_min, y_min, x_max, y_max). All values should be in range [0, 1].

(0, 0, 1, 0.5)
angle_lower float

should be in range [0, angle_upper].

0.0
angle_upper float

should be in range [angle_lower, 1].

1.0
num_flare_circles_lower int

lower limit for the number of flare circles. Should be in range [0, num_flare_circles_upper].

6
num_flare_circles_upper int

upper limit for the number of flare circles. Should be in range [num_flare_circles_lower, inf].

10
src_radius int

Radius of the flare.

400
src_color Tuple[int, int, int]

Color of the flare (R,G,B).

(255, 255, 255)
Image types

uint8, float32

Source code in fastestimator/fastestimator/op/numpyop/univariate/random_sun_flare.py
@traceable()
class RandomSunFlare(ImageOnlyAlbumentation):
    """Add a sun flare to the image.

    Args:
        inputs: Key(s) of images to be normalized.
        outputs: Key(s) into which to write the modified images.
        mode: What mode(s) to execute this Op in. For example, "train", "eval", "test", or "infer". To execute
            regardless of mode, pass None. To execute in all modes except for a particular one, you can pass an argument
            like "!infer" or "!train".
        ds_id: What dataset id(s) to execute this Op in. To execute regardless of ds_id, pass None. To execute in all
            ds_ids except for a particular one, you can pass an argument like "!ds1".
        flare_roi: region of the image where flare will appear (x_min, y_min, x_max, y_max). All values should be
            in range [0, 1].
        angle_lower: should be in range [0, `angle_upper`].
        angle_upper: should be in range [`angle_lower`, 1].
        num_flare_circles_lower: lower limit for the number of flare circles.
            Should be in range [0, `num_flare_circles_upper`].
        num_flare_circles_upper: upper limit for the number of flare circles.
            Should be in range [`num_flare_circles_lower`, inf].
        src_radius: Radius of the flare.
        src_color: Color of the flare (R,G,B).

    Image types:
        uint8, float32
    """
    def __init__(self,
                 inputs: Union[str, Iterable[str]],
                 outputs: Union[str, Iterable[str]],
                 mode: Union[None, str, Iterable[str]] = None,
                 ds_id: Union[None, str, Iterable[str]] = None,
                 flare_roi: Tuple[float, float, float, float] = (0, 0, 1, 0.5),
                 angle_lower: float = 0.0,
                 angle_upper: float = 1.0,
                 num_flare_circles_lower: int = 6,
                 num_flare_circles_upper: int = 10,
                 src_radius: int = 400,
                 src_color: Tuple[int, int, int] = (255, 255, 255)):
        super().__init__(
            RandomSunFlareAlb(flare_roi=flare_roi,
                              angle_lower=angle_lower,
                              angle_upper=angle_upper,
                              num_flare_circles_lower=num_flare_circles_lower,
                              num_flare_circles_upper=num_flare_circles_upper,
                              src_radius=src_radius,
                              src_color=src_color,
                              always_apply=True),
            inputs=inputs,
            outputs=outputs,
            mode=mode,
            ds_id=ds_id)