Load and return the SVHN Cropped digits dataset.
For more information about this dataset please visit http://ufldl.stanford.edu/housenumbers/. Here, we are using
Format 2 to get MNIST-like 32-by-32 images.
Parameters:
Name |
Type |
Description |
Default |
root_dir |
Optional[str]
|
The path to store the downloaded data. When path is not provided, the data will be saved into
fastestimator_data under the user's home directory.
|
None
|
Returns:
Type |
Description |
Tuple[NumpyDataset, NumpyDataset]
|
|
Source code in fastestimator/fastestimator/dataset/data/svhn_cropped.py
| def load_data(root_dir: Optional[str] = None) -> Tuple[NumpyDataset, NumpyDataset]:
"""Load and return the SVHN Cropped digits dataset.
For more information about this dataset please visit http://ufldl.stanford.edu/housenumbers/. Here, we are using
Format 2 to get MNIST-like 32-by-32 images.
Args:
root_dir: The path to store the downloaded data. When `path` is not provided, the data will be saved into
`fastestimator_data` under the user's home directory.
Returns:
(train_data, test_data)
"""
home = str(Path.home())
if root_dir is None:
root_dir = os.path.join(home, 'fastestimator_data', 'SVHN_Cropped')
else:
root_dir = os.path.join(os.path.abspath(root_dir), 'SVHN_Cropped')
os.makedirs(root_dir, exist_ok=True)
# download data to memory
train_path = os.path.join(root_dir, "train_32x32.mat")
test_path = os.path.join(root_dir, "test_32x32.mat")
if not os.path.exists(train_path):
print("Downloading train data to {}".format(root_dir))
wget.download('http://ufldl.stanford.edu/housenumbers/train_32x32.mat', root_dir, bar=bar_custom)
if not os.path.exists(test_path):
print("Downloading test data to {}".format(root_dir))
wget.download('http://ufldl.stanford.edu/housenumbers/test_32x32.mat', root_dir, bar=bar_custom)
xy_train = loadmat(train_path)
xy_test = loadmat(test_path)
# setting label of '0' digit from '10' to '0'
xy_train['y'][xy_train['y'] == 10] = 0
xy_test['y'][xy_test['y'] == 10] = 0
# make datasets
train_data = NumpyDataset({"x": np.transpose(xy_train['X'], (3, 0, 1, 2)), "y": xy_train['y']})
test_data = NumpyDataset({"x": np.transpose(xy_test['X'], (3, 0, 1, 2)), "y": xy_test['y']})
return train_data, test_data
|