_squeeze
squeeze
¶
Remove an axis
from a tensor
if that axis has length 1.
This method can be used with Numpy data:
n = np.array([[[[1],[2]]],[[[3],[4]]],[[[5],[6]]]]) # shape == (3, 1, 2, 1)
b = fe.backend.squeeze(n) # [[1, 2], [3, 4], [5, 6]]
b = fe.backend.squeeze(n, axis=1) # [[[1], [2]], [[3], [4]], [[5], [6]]]
b = fe.backend.squeeze(n, axis=3) # [[[1, 2]], [[3, 4]], [[5, 6]]]
This method can be used with TensorFlow tensors:
t = tf.constant([[[[1],[2]]],[[[3],[4]]],[[[5],[6]]]]) # shape == (3, 1, 2, 1)
b = fe.backend.squeeze(t) # [[1, 2], [3, 4], [5, 6]]
b = fe.backend.squeeze(t, axis=1) # [[[1], [2]], [[3], [4]], [[5], [6]]]
b = fe.backend.squeeze(t, axis=3) # [[[1, 2]], [[3, 4]], [[5, 6]]]
This method can be used with PyTorch tensors:
p = torch.tensor([[[[1],[2]]],[[[3],[4]]],[[[5],[6]]]]) # shape == (3, 1, 2, 1)
b = fe.backend.squeeze(p) # [[1, 2], [3, 4], [5, 6]]
b = fe.backend.squeeze(p, axis=1) # [[[1], [2]], [[3], [4]], [[5], [6]]]
b = fe.backend.squeeze(p, axis=3) # [[[1, 2]], [[3, 4]], [[5, 6]]]
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tensor |
Tensor
|
The input value. |
required |
axis |
Optional[int]
|
Which axis to squeeze along, which must have length==1 (or pass None to squeeze all length 1 axes). |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
The reshaped |
Raises:
Type | Description |
---|---|
ValueError
|
If |