_reduce_max
reduce_max
¶
Compute the maximum value along a given axis
of a tensor
.
This method can be used with Numpy data:
n = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
b = fe.backend.reduce_max(n) # 8
b = fe.backend.reduce_max(n, axis=0) # [[5, 6], [7, 8]]
b = fe.backend.reduce_max(n, axis=1) # [[3, 4], [7, 8]]
b = fe.backend.reduce_max(n, axis=[0,2]) # [6, 8]
This method can be used with TensorFlow tensors:
t = tf.constant([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
b = fe.backend.reduce_max(t) # 8
b = fe.backend.reduce_max(t, axis=0) # [[5, 6], [7, 8]]
b = fe.backend.reduce_max(t, axis=1) # [[3, 4], [7, 8]]
b = fe.backend.reduce_max(t, axis=[0,2]) # [6, 8]
This method can be used with PyTorch tensors:
p = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
b = fe.backend.reduce_max(p) # 8
b = fe.backend.reduce_max(p, axis=0) # [[5, 6], [7, 8]]
b = fe.backend.reduce_max(p, axis=1) # [[3, 4], [7, 8]]
b = fe.backend.reduce_max(p, axis=[0,2]) # [6, 8]
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tensor |
Tensor
|
The input value. |
required |
axis |
Union[None, int, Sequence[int]]
|
Which axis or collection of axes to compute the maximum along. |
None
|
keepdims |
bool
|
Whether to preserve the number of dimensions during the reduction. |
False
|
Returns:
Type | Description |
---|---|
Tensor
|
The maximum values of |
Raises:
Type | Description |
---|---|
ValueError
|
If |