def load_data(root_dir: Optional[str] = None) -> Tuple[LabeledDirDataset, LabeledDirDataset]:
"""Load and return the Tiny ImageNet dataset.
Sourced from http://cs231n.stanford.edu/tiny-imagenet-200.zip. This method will
download the data to local storage if the data has not been previously downloaded.
Args:
root_dir: The path to store the downloaded data. When `path` is not provided, the data will be saved into
`fastestimator_data` under the user's home directory.
Returns:
(train_data, eval_data)
"""
home = str(Path.home())
if root_dir is None:
root_dir = os.path.join(home, 'fastestimator_data', 'tiny_imagenet')
else:
root_dir = os.path.join(os.path.abspath(root_dir), 'tiny_imagenet')
os.makedirs(root_dir, exist_ok=True)
data_compressed_path = os.path.join(root_dir, 'tiny-imagenet-200.zip')
train_file_path = os.path.join(root_dir, 'tiny-imagenet-200', 'train')
val_file_path = os.path.join(root_dir, 'tiny-imagenet-200', 'val')
if (os.path.exists(train_file_path) == False) or (os.path.exists(val_file_path) == False):
# download
if not os.path.exists(data_compressed_path):
print("Downloading data to {}".format(root_dir))
wget.download('http://cs231n.stanford.edu/tiny-imagenet-200.zip', root_dir, bar=bar_custom)
# extract
print("\nExtracting files ...")
with zipfile.ZipFile(data_compressed_path, 'r') as zip_file:
zip_file.extractall(root_dir)
#os.rename(os.path.join(root_dir, 'horse2zebra'), data_folder_path)
current_dir = os.path.join(root_dir, 'tiny-imagenet-200')
# Update Train Directory
for root, _, files in os.walk(os.path.join(current_dir, 'train')):
for filename in files:
#print(os.path.join(root, filename))
if filename.endswith('.txt'):
os.remove(os.path.join(root, filename))
else:
p = Path(os.path.join(root, filename)).absolute()
parent_dir = p.parents[1]
p.rename(parent_dir / p.name)
if len(os.listdir(root)) == 0:
os.rmdir(root)
# Update Val Directory
for line in open(os.path.join(current_dir, 'val', 'val_annotations.txt')).readlines():
file_data = [n for n in line.split()]
folder_path = os.path.join(current_dir, 'val', file_data[1])
if not os.path.exists(folder_path):
os.makedirs(folder_path)
file_path = os.path.join(current_dir, 'val', 'images', file_data[0])
os.rename(file_path, os.path.join(folder_path, file_data[0]))
os.rmdir(os.path.join(current_dir, 'val', 'images'))
os.remove(os.path.join(current_dir, 'val', 'val_annotations.txt'))
root_path = os.path.join(root_dir, 'tiny-imagenet-200')
train_outputs = LabeledDirDataset(os.path.join(root_path, "train"), data_key='image', label_key='label')
eval_outputs = LabeledDirDataset(os.path.join(root_path, "val"), data_key='image', label_key='label')
return (train_outputs, eval_outputs)